
Abstract Semantic

Differencing via

Speculative

Correlation
NIMROD PARTUSH

ERAN YAHAV

TECHNION (HAIFA, ISRAEL)

[OOPSLA’14]

Problem: Semantic Differencing

 For two procedures P,P’:

 Prove that P and P’ are equivalent

 Produce the same output for the same input

 Otherwise, produce a useful description of the

difference

2

Motivation

 “Successful software always gets changed.”

– Frederick P. Brooks

3

 Program

understanding &

Debugging

 Test generation & pruning

 “Big Code”

Example: Sequence Printing

 Prints a sequence of numbers from 𝑓𝑖𝑟𝑠𝑡 to 𝑙𝑎𝑠𝑡 in increments

of 𝑆𝑇𝐸𝑃

 Simplified code from Coreutils seq.c version 6.9

 For instance for the input 𝒇𝒊𝒓𝒔𝒕 = 𝟏, 𝒍𝒂𝒔𝒕 = 𝟏𝟑, 𝑺𝑻𝑬𝑷 = 𝟐 the

procedure will print the sequence 𝟏, 𝟑, 𝟓, 𝟕, 𝟗, 𝟏𝟏, 𝟏𝟑 4

𝑓𝑖𝑟𝑠𝑡 = 1 𝑙𝑎𝑠𝑡 = 13

𝑆𝑇𝐸𝑃 = 2

1,3,5,7,9,11,13

Example: Sequence Printing

 Does version 6.10 print the same sequence?

 Syntactic difference is vast

 But the output is the same: x is equivalent at the point of

printing (9,10’)
5

Test Equivalence

 Run the procedures with the same inputs and check outputs for

equivalence

6

𝑓𝑖𝑟𝑠𝑡 = 1, 𝑙𝑎𝑠𝑡 = 1, 𝑆𝑇𝐸𝑃 = 1

1

𝑓𝑖𝑟𝑠𝑡 = 1, 𝑙𝑎𝑠𝑡 = 1, 𝑆𝑇𝐸𝑃 = 1

1

𝑓𝑖𝑟𝑠𝑡 = 1, 𝑙𝑎𝑠𝑡 = 2, 𝑆𝑇𝐸𝑃 = 1

1,2

𝑓𝑖𝑟𝑠𝑡 = 1, 𝑙𝑎𝑠𝑡 = 2, 𝑆𝑇𝐸𝑃 = 1

1,2

𝑓𝑖𝑟𝑠𝑡 = 1, 𝑙𝑎𝑠𝑡 = 3, 𝑆𝑇𝐸𝑃 = 1

1,2,3

𝑓𝑖𝑟𝑠𝑡 = 1, 𝑙𝑎𝑠𝑡 = 3, 𝑆𝑇𝐸𝑃 = 1

1,2,3
 Can only show cases where procedures differ

 Modulo cost and coverage (if you are lucky)

 Cannot prove equivalence for most programs

Abstract Semantic Differencing

 Use abstract interpretation to prove equivalence

between two program versions

 Or characterize their difference

 Find (an abstraction of) differing programs states that come

from the same input

 Sound

 Equivalence is guaranteed

 Precise

 Report few false differences

7

Equivalence Under Abstraction

 Analyzing the programs separately may result in false

equivalence

 For instance, interpreting with a numerical relational abstraction:

8

{𝑖 ≤ 𝑛} {𝑖′ ≤ 𝑛′}

Our Approach

 Analyze P and P’ together

 Define a correlating semantics that interprets the
programs together

 Interpretation is done in some interleaving of their steps

 Abstract the correlating semantics to handle infinite-state

programs

 Search for the interleaving that allows the

abstraction to best capture equivalence

9

Correlating Semantics

 Maintain direct correlation between values in the

programs P and P’

 Use a relational abstraction that captures equivalences

10

𝜎′ = {𝑖′ ≤ 𝑛′}𝜎 = {𝑖 ≤ 𝑛}𝜎⋈ = {𝒊 ≠ 𝒊′ ≤ 𝑛 = 𝑛′}

Order Matters!

 Analysis order determines the abstract correlating

semantics’ ability to track equivalence

 For example, in sequential order:

 By the time one program’s analysis is finished, the values have been

abstracted and equivalence is lost

11

iter #0: {𝑖′ = 𝑖}Abstraction…iter #1: {𝑖 = 𝑖′ + 1}
Loop invariant:

{𝑖 ≤ 𝑛, 𝑖′ = ? }iter #2: {𝑖 = 𝑖′ + 2}

;

Choosing Program Interleaving

12

 In which order should the programs be analyzed?

 Sequential?

program'

counter

program

counter

Abstract state Interpretation step

;

Choosing Program Interleaving

13

 In which order should the programs be analyzed?

 Lock-Step?

pc'

pc

Abstract state Interpretation step

{𝑖 = 𝑖′ + 1}

{𝑖′ = 𝑖}

Loop invariant:

{𝑖 ≤ 𝑛, 𝑖′ = 𝑖}

Choosing Program Interleaving

14

 In which order should the programs be analyzed?

 All possible interleavings?

 Will result in an exponential blow-up

pc'

pc

Abstract state Interpretation step

Choosing Program Interleaving

 The challenge is to find an interleaving that allows

maintaining equivalence under abstraction

 While avoiding exponential blow-up

15

PrecisionScalability

single

interleaving

all

interleavings

Speculative

Exploration

Speculative Exploration

 The search for an interleaving is part of the fixed-

point abstract interpretation analysis

 The search drives the analysis

 The algorithm is composed of two steps

 while 𝑤𝑜𝑟𝑘𝑙𝑖𝑠𝑡 ≠ ∅

 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ← Speculate(𝑷,𝑷′, 𝑤𝑜𝑟𝑘𝑙𝑖𝑠𝑡, 𝑠𝑡𝑎𝑡𝑒⋈, 𝑘)

 (𝑤𝑜𝑟𝑘𝑙𝑖𝑠𝑡, 𝑠𝑡𝑎𝑡𝑒⋈) ←

Find_Minimal_Diff_Result(𝑃, 𝑃′, 𝑟𝑒𝑠𝑢𝑙𝑡𝑠)

16

Speculative Exploration: Example

 Speculate(𝑘 = 7)

17

0 steps over v6.9,

7 steps over v6.10

3 steps over v6.9,

4 steps over v6.10

7 steps over v6.9,

0 steps over v6.10
…

…

…

…

4,11′ ↦
{𝑖′ = 1, 𝑖 =? ,

𝑥′ = 𝑓𝑖𝑟𝑠𝑡′ + 𝑆𝑇𝐸𝑃′,
𝑥 = ? ,
… }

7,7′ ↦
{𝑖′ = 1, 𝑖 = 0,
𝑥′ = 𝑥 = 𝑓𝑖𝑟𝑠𝑡,

… }

6,4′ ↦
{𝑖′ = ? , 𝑖 = 1,

𝑥′ =? , 𝑥 = 𝑓𝑖𝑟𝑠𝑡,
… }

Comparing Abstractions to find

Minimal Difference

 We explored two strategies

1. Scale-oriented: count the number of equivalent variables
(denoted ≡ 𝑣) per state

2. Precision-oriented: Use the abstract domain (APRON

Polyhedra) geometrical representation to compute

difference inclusion

18

…

9,4′ ↦ 𝑖 = 0, 𝑖′ = ? , 𝑥 = 𝑓𝑖𝑟𝑠𝑡, 𝑥′ =? , 𝑥 ≤ 𝑙𝑎𝑠𝑡, 𝑥0
′ = 𝑥′

6,7′ ↦ {0 ≤ 𝑖, 𝑖′ = 1, 𝑓𝑖𝑟𝑠𝑡 ≤ 𝑥 ≤ 𝑙𝑎𝑠𝑡, 𝑥′ = 𝑓𝑖𝑟𝑠𝑡}𝜎⋈1=

…

5,5′ ↦ 𝑖 = 𝑖′ = 1, 𝑥 =? , 𝑥′ = 𝑓𝑖𝑟𝑠𝑡 + 𝑆𝑇𝐸𝑃, 𝑥0
′ = ?

7,9′ ↦ {0 ≤ 𝑖 = 𝑖′, 𝑥 ≤ 𝑙𝑎𝑠𝑡, 𝑥′ = 𝑥0′}𝜎⋈2=

…

Speculative Exploration:

Visualization (𝑘 = 7)

19

4

5

9

8

7

6

4’ 5’ 6’ 7’ 8’ 9’ 10’

≡{x}

≡{i}
pc’

pc

Producing Description of Difference

 The speculative algorithm is geared towards finding

minimal difference (and not strictly equivalence)

 A usable description of difference is produced even if full

equivalence does not hold

20

9,10′ ↦
𝑝𝑟𝑖𝑛𝑡_𝑒𝑥𝑡𝑟𝑎_𝑛𝑢𝑚𝑏𝑒𝑟, 𝑥′ = 𝑥, 𝑖′ = 𝑖 + 1, 𝑥 ≤ 𝑙𝑎𝑠𝑡

∨
¬𝑝𝑟𝑖𝑛𝑡_𝑒𝑥𝑡𝑟𝑎_𝑛𝑢𝑚𝑏𝑒𝑟, 𝑥′ = 𝑥 + 𝑆𝑇𝐸𝑃, 𝑖′ = 𝑖 + 1, 𝑥 ≤ 𝑙𝑎𝑠𝑡

Evaluation
Function #LOC #Patch #Loops Time

print_numbers 23 7-,13+ 1 00:11 (k=2)

cache_fstatat 17 2-,4+ 0 00:03 (k=1)
set_owner 51 2-,4+ 0 00:02 (k=2)
fmt 42 5-,5+ 1 00:22 (k=2)
md5sum 40 0-,3+ 3 13:31 (k=2)

char_to_clump 111 2-,12+ 3 19:09 (k=2)
savewd 86 0-,1+ 0 00:46 (k=2)
addr 77 1-,2+ 0 00:17 (k=1)

SetTextInternal 47 0-,3+ 1 11:28 (k=3)

get_sha1_basic v1 145 3-,10+ 2 118:01 (k=2)

get_sha1_basic v2 149 2-,20+ 2 TO (2H)

get_path_prefix 22 2-,3+ 1 29:12 (k=3)
boot_attr v1 77 7-,4+ 0 08:08 (k=4)
boot_attr v2 74 5-,7+ 0 06:04 (k=4)
read_attr 32 1-,4+ 1 05:42 (k=2)

ll_binary_merge 37 8-,24+ 1 00:53 (k=1)

write_zip_entry 340 1-,4+ 3 07:32 (k=2)
DDEC 10 3-,3+ 1 00:13 (k=1)
DSE 7 2-,3+ 1 00:09 (k=1)
RegVer 10 4-,4+ 1 00:07 (k=1)
SymDiff 32 5-,4+ 0 00:04 (k=1)

21

Conclusion

 The interleaving\matching problem is closely
coupled with semantic diff & equivalence

 Previous approach mainly use syntactic cues

 New approach: search for an interleaving

 With an equivalence criteria to drive the search

 A description of difference is produced,
instead of a binary yes/no for equivalence

 Useful for program understanding, debugging etc.

 Available on github

22

Contact us!

{nimi,yahave}@cs.technion.ac.il

Proposed Questions

1. Shouldn’t there (still) be some exponential blow-up here??

2. Where does the variable matching come from?

3. Can you talk about how related work find their interleaving?

4. How do you handle function calls?

5. How do you handle heap\array data?

6. Why were the 𝑘’s in your evaluation so small?

7. Can you elaborate on the precise method for comparing abstractions?

8. You seem to have used a disjunctive domain, how did you ⊔ and 𝛻 it?

9. Won’t you miss interleavings?

10. How does the approach scale (inter-procedurally)?

11. Is the analysis proportional to the size of change\program\both?

23

Un-interpreted Functions

 Function calls are handled modularly

 If 𝑓𝑜𝑜 was proven to be equivalent, and so are 𝑦 & 𝑧, the result

will be equivalent

 Otherwise, anything (T) is ossible for 𝑥

 Array and heap access are modeled similarly

24

≡𝑎𝑟𝑟𝑎𝑦 ≡𝑖𝑑𝑥

≡𝑎𝑟𝑟𝑎𝑦 𝑖𝑑𝑥

≡𝑓𝑜𝑜 ≡{𝑣1,𝑣2}

≡𝑓𝑜𝑜(𝑣1,𝑣2)

Related work: program

matching

 Symbolic Execution based approaches [DSE, UC-KLEE]:

 Bound loop iteration

 try to explore all bound paths

 Check equivalence on each path

 Recursion-Rule based approaches [SymDiff]:

 Transform loops to function calls

 Use function calls as matching locations

 i.e. try and prove the inputs to each function call are equivalent

 Data\Trace based approaches [DDEC]:

 Use run traces variable values to infer a bi-simulation relation of
the two programs

25

Equivalence-based Partitioning

 We use a disjunctive domain to allow separating equivalent

paths from differing paths
𝑝𝑟𝑖𝑛𝑡_𝑒𝑥𝑡𝑟𝑎_𝑛𝑢𝑚𝑏𝑒𝑟, 𝑥′ = 𝑥, 𝑖′ = 𝑖 + 1, 𝑥 ≤ 𝑙𝑎𝑠𝑡

∨
¬𝑝𝑟𝑖𝑛𝑡_𝑒𝑥𝑡𝑟𝑎_𝑛𝑢𝑚𝑏𝑒𝑟, 𝑥′ = 𝑥 + 𝑆𝑇𝐸𝑃, 𝑖′ = 𝑖 + 1, 𝑥 ≤ 𝑙𝑎𝑠𝑡

 How do you Join such a domain?

 which sub-states are joined with which?

 We Join and Widen abstract states based on the equivalences

they preserve

 the set of variables that hold equivalence

 disjunction size bound at 2|VAR|

 lose some information, but maintain what's important (equivalence)

26

Finding Minimal Difference

27

𝜎 (𝑉 = 𝑉′)𝜎

¬(𝜎 𝑉 = 𝑉′)

Partial Order Reduction

 Exploring all interleavings over two programs within 𝑘 steps would
yield 2𝑘 results

 Since each step can be performed on either P or P’

 For the most part, a single representative is sufficient

 Meaning foreach 0 < 𝑖 ≤ 𝑘 we explore first interpreting all 𝑖 steps over
P and then 𝑘 − 𝑖 over P’

 No alternation in-between

 Resulting in 𝑘 + 1 results

 Since the domain is commutative and join\widen is only performed
after each speculative step

 This does mean we miss some interleavings

 But did not pose an issue in our benchmarks

 A small sacrifice to make for scaling

28

Full Program Equivalence Checking

 For full program equivalence, we currently use the modular

approach

 And in the case the callee differs among versions, we assume T

 Future: use the description of difference instead, somehow

 This is the state of the art for equivalence checking

 The only full-program approaches (known to this presenter :) are

symbolic execution based ones, that try to pin-point differing

paths

 Usually get poor coverage

 Generally unable to prove equivalence

30

Interesting Diff

31

int foo(int x, int y) {
int z = 0,w,o;
z++;

...

for (x = 0; x < 2*y ; ++x)
w += 2;

...

if (y > 42) {
z -= 13;
o = z + zoo(3);

x--;
}

...

}

int foo`(int x`, int y`) {
int z` = 1,w`,o`;
z`--;

...

for (x` = 0; x` < y` ; ++x`)
w` += 4;

...

if (y` > 47) {
z` -= 12;
o` = zoo(3);
x`++;

}

...

}

{≡{𝑥,𝑦,𝑤,𝑜}, 𝑧′ = 𝑧 − 1}

{≡ 𝑦,𝑤,𝑜 , 𝑥 = 2𝑥′, 𝑧′ = 𝑧 − 1}

≡ 𝑦,𝑤,𝑜 , 𝑦 ≤ 42, 𝑥 = 2𝑥′, 𝑧′ = 𝑧 − 1

∨
≡ 𝑦,𝑤 , 47 ≥ 𝑦 ≥ 42, 𝑧′ = 𝑧 − 14,

𝑜′ = 𝑧′ + 𝑧𝑜𝑜 3 , … }

∨

≡ 𝑦,𝑤,𝑧 , 𝑦 > 47, 𝑜 = 𝑜′ + 𝑧, 𝑥 = 2𝑥′ − 2

