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Problem: Semantic Differencing

 For two procedures P,P’:

 Prove that P and P’ are equivalent

 Produce the same output for the same input

 Otherwise, produce a useful description of the 

difference
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Motivation

 “Successful software always gets changed.”

– Frederick P. Brooks
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 Program 

understanding & 

Debugging

 Test generation & pruning

 “Big Code”



Example: Sequence Printing

 Prints a sequence of numbers from 𝑓𝑖𝑟𝑠𝑡 to 𝑙𝑎𝑠𝑡 in increments 

of 𝑆𝑇𝐸𝑃

 Simplified code from Coreutils seq.c version 6.9

 For instance for the input 𝒇𝒊𝒓𝒔𝒕 = 𝟏, 𝒍𝒂𝒔𝒕 = 𝟏𝟑, 𝑺𝑻𝑬𝑷 = 𝟐 the 

procedure will print the sequence 𝟏, 𝟑, 𝟓, 𝟕, 𝟗, 𝟏𝟏, 𝟏𝟑 4

𝑓𝑖𝑟𝑠𝑡 = 1 𝑙𝑎𝑠𝑡 = 13

𝑆𝑇𝐸𝑃 = 2

1,3,5,7,9,11,13



Example: Sequence Printing

 Does version 6.10 print the same sequence?

 Syntactic difference is vast

 But the output is the same: x is equivalent at the point of 

printing (9,10’)
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Test Equivalence

 Run the procedures with the same inputs and check outputs for 

equivalence
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𝑓𝑖𝑟𝑠𝑡 = 1, 𝑙𝑎𝑠𝑡 = 1, 𝑆𝑇𝐸𝑃 = 1

1

𝑓𝑖𝑟𝑠𝑡 = 1, 𝑙𝑎𝑠𝑡 = 1, 𝑆𝑇𝐸𝑃 = 1

1

𝑓𝑖𝑟𝑠𝑡 = 1, 𝑙𝑎𝑠𝑡 = 2, 𝑆𝑇𝐸𝑃 = 1

1,2

𝑓𝑖𝑟𝑠𝑡 = 1, 𝑙𝑎𝑠𝑡 = 2, 𝑆𝑇𝐸𝑃 = 1

1,2

𝑓𝑖𝑟𝑠𝑡 = 1, 𝑙𝑎𝑠𝑡 = 3, 𝑆𝑇𝐸𝑃 = 1

1,2,3

𝑓𝑖𝑟𝑠𝑡 = 1, 𝑙𝑎𝑠𝑡 = 3, 𝑆𝑇𝐸𝑃 = 1

1,2,3
 Can only show cases where procedures differ

 Modulo cost and coverage (if you are lucky)

 Cannot prove equivalence for most programs



Abstract Semantic Differencing

 Use abstract interpretation to prove equivalence 

between two program versions

 Or characterize their difference

 Find (an abstraction of) differing programs states that come 

from the same input

 Sound

 Equivalence is guaranteed

 Precise

 Report few false differences
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Equivalence Under Abstraction

 Analyzing the programs separately may result in false 

equivalence

 For instance, interpreting with a numerical relational abstraction:
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{𝑖 ≤ 𝑛} {𝑖′ ≤ 𝑛′}



Our Approach

 Analyze P and P’ together

 Define a correlating semantics that interprets the 
programs together

 Interpretation is done in some interleaving of their steps

 Abstract the correlating semantics to handle infinite-state 

programs

 Search for the interleaving that allows the 

abstraction to best capture equivalence
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Correlating Semantics

 Maintain direct correlation between values in the 

programs P and P’

 Use a relational abstraction that captures equivalences
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𝜎′ = {𝑖′ ≤ 𝑛′}𝜎 = {𝑖 ≤ 𝑛}𝜎⋈ = {𝒊 ≠ 𝒊′ ≤ 𝑛 = 𝑛′}



Order Matters!

 Analysis order determines the abstract correlating 

semantics’ ability to track equivalence

 For example, in sequential order:

 By the time one program’s analysis is finished, the values have been 

abstracted and equivalence is lost
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iter #0: {𝑖′ = 𝑖}Abstraction…iter #1: {𝑖 = 𝑖′ + 1}
Loop invariant: 

{𝑖 ≤ 𝑛, 𝑖′ = ? }iter #2: {𝑖 = 𝑖′ + 2}

;




Choosing Program Interleaving
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 In which order should the programs be analyzed?

 Sequential?

program' 

counter

program 

counter

Abstract state Interpretation step

;



Choosing Program Interleaving
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 In which order should the programs be analyzed?

 Lock-Step?

pc'

pc

Abstract state Interpretation step



{𝑖 = 𝑖′ + 1}

{𝑖′ = 𝑖}

Loop invariant: 

{𝑖 ≤ 𝑛, 𝑖′ = 𝑖} 





Choosing Program Interleaving
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 In which order should the programs be analyzed?

 All possible interleavings?

 Will result in an exponential blow-up

pc'

pc

Abstract state Interpretation step







Choosing Program Interleaving

 The challenge is to find an interleaving that allows 

maintaining equivalence under abstraction

 While avoiding exponential blow-up
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PrecisionScalability

single 

interleaving

all

interleavings

Speculative 

Exploration



Speculative Exploration

 The search for an interleaving is part of the fixed-

point abstract interpretation analysis

 The search drives the analysis

 The algorithm is composed of two steps

 while 𝑤𝑜𝑟𝑘𝑙𝑖𝑠𝑡 ≠ ∅

 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ← Speculate(𝑷,𝑷′, 𝑤𝑜𝑟𝑘𝑙𝑖𝑠𝑡, 𝑠𝑡𝑎𝑡𝑒⋈, 𝑘)

 (𝑤𝑜𝑟𝑘𝑙𝑖𝑠𝑡, 𝑠𝑡𝑎𝑡𝑒⋈) ←

Find_Minimal_Diff_Result(𝑃, 𝑃′, 𝑟𝑒𝑠𝑢𝑙𝑡𝑠)
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Speculative Exploration: Example

 Speculate(𝑘 = 7)
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0 steps over v6.9, 

7 steps over v6.10

3 steps over v6.9, 

4 steps over v6.10

7 steps over v6.9, 

0 steps over v6.10
…

…

…

…

4,11′ ↦
{𝑖′ = 1, 𝑖 =? ,

𝑥′ = 𝑓𝑖𝑟𝑠𝑡′ + 𝑆𝑇𝐸𝑃′,
𝑥 = ? ,
… }

7,7′ ↦
{𝑖′ = 1, 𝑖 = 0,
𝑥′ = 𝑥 = 𝑓𝑖𝑟𝑠𝑡,

… }

6,4′ ↦
{𝑖′ = ? , 𝑖 = 1,

𝑥′ =? , 𝑥 = 𝑓𝑖𝑟𝑠𝑡,
… }



Comparing Abstractions to find 

Minimal Difference

 We explored two strategies

1. Scale-oriented: count the number of equivalent variables 
(denoted ≡ 𝑣 ) per state

2. Precision-oriented: Use the abstract domain (APRON 

Polyhedra) geometrical representation to compute 

difference inclusion
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…

9,4′ ↦ 𝑖 = 0, 𝑖′ = ? , 𝑥 = 𝑓𝑖𝑟𝑠𝑡, 𝑥′ =? , 𝑥 ≤ 𝑙𝑎𝑠𝑡, 𝑥0
′ = 𝑥′

6,7′ ↦ {0 ≤ 𝑖, 𝑖′ = 1, 𝑓𝑖𝑟𝑠𝑡 ≤ 𝑥 ≤ 𝑙𝑎𝑠𝑡, 𝑥′ = 𝑓𝑖𝑟𝑠𝑡}𝜎⋈1=

…

5,5′ ↦ 𝑖 = 𝑖′ = 1, 𝑥 =? , 𝑥′ = 𝑓𝑖𝑟𝑠𝑡 + 𝑆𝑇𝐸𝑃, 𝑥0
′ = ?

7,9′ ↦ {0 ≤ 𝑖 = 𝑖′, 𝑥 ≤ 𝑙𝑎𝑠𝑡, 𝑥′ = 𝑥0′}𝜎⋈2=

…



Speculative Exploration: 

Visualization (𝑘 = 7)
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4

5

9

8

7

6

4’ 5’ 6’ 7’ 8’ 9’ 10’

≡{x}

≡{i}
pc’

pc



Producing Description of Difference

 The speculative algorithm is geared towards finding 

minimal difference (and not strictly equivalence)

 A usable description of difference is produced even if full 

equivalence does not hold
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9,10′ ↦
𝑝𝑟𝑖𝑛𝑡_𝑒𝑥𝑡𝑟𝑎_𝑛𝑢𝑚𝑏𝑒𝑟, 𝑥′ = 𝑥, 𝑖′ = 𝑖 + 1, 𝑥 ≤ 𝑙𝑎𝑠𝑡

∨
¬𝑝𝑟𝑖𝑛𝑡_𝑒𝑥𝑡𝑟𝑎_𝑛𝑢𝑚𝑏𝑒𝑟, 𝑥′ = 𝑥 + 𝑆𝑇𝐸𝑃, 𝑖′ = 𝑖 + 1, 𝑥 ≤ 𝑙𝑎𝑠𝑡



Evaluation
Function #LOC #Patch #Loops Time

print_numbers 23 7-,13+ 1 00:11 (k=2)

cache_fstatat 17 2-,4+ 0 00:03 (k=1)
set_owner 51 2-,4+ 0 00:02 (k=2)
fmt 42 5-,5+ 1 00:22 (k=2)
md5sum 40 0-,3+ 3 13:31 (k=2)

char_to_clump 111 2-,12+ 3 19:09 (k=2)
savewd 86 0-,1+ 0 00:46 (k=2)
addr 77 1-,2+ 0 00:17 (k=1)

SetTextInternal 47 0-,3+ 1 11:28 (k=3)

get_sha1_basic v1 145 3-,10+ 2 118:01 (k=2)

get_sha1_basic v2 149 2-,20+ 2 TO (2H)

get_path_prefix 22 2-,3+ 1 29:12 (k=3)
boot_attr v1 77 7-,4+ 0 08:08 (k=4)
boot_attr v2 74 5-,7+ 0 06:04 (k=4)
read_attr 32 1-,4+ 1 05:42 (k=2)

ll_binary_merge 37 8-,24+ 1 00:53 (k=1)

write_zip_entry 340 1-,4+ 3 07:32 (k=2)
DDEC 10 3-,3+ 1 00:13 (k=1)
DSE 7 2-,3+ 1 00:09 (k=1)
RegVer 10 4-,4+ 1 00:07 (k=1)
SymDiff 32 5-,4+ 0 00:04 (k=1)
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Conclusion

 The interleaving\matching problem is closely 
coupled with semantic diff & equivalence

 Previous approach mainly use syntactic cues

 New approach: search for an interleaving

 With an equivalence criteria to drive the search

 A description of difference is produced, 
instead of a binary yes/no for equivalence

 Useful for program understanding, debugging etc.

 Available on github
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Contact us!

{nimi,yahave}@cs.technion.ac.il



Proposed Questions

1. Shouldn’t there (still) be some exponential blow-up here??

2. Where does the variable matching come from?

3. Can you talk about how related work find their interleaving?

4. How do you handle function calls?

5. How do you handle heap\array data?

6. Why were the 𝑘’s in your evaluation so small?

7. Can you elaborate on the precise method for comparing abstractions?

8. You seem to have used a disjunctive domain, how did you ⊔ and 𝛻 it?

9. Won’t you miss interleavings?

10. How does the approach scale (inter-procedurally)?

11. Is the analysis proportional to the size of change\program\both?
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Un-interpreted Functions

 Function calls are handled modularly

 If 𝑓𝑜𝑜 was proven to be equivalent, and so are 𝑦 & 𝑧, the result 

will be equivalent

 Otherwise, anything (T) is ossible for 𝑥

 Array and heap access are modeled similarly

24

≡𝑎𝑟𝑟𝑎𝑦 ≡𝑖𝑑𝑥

≡𝑎𝑟𝑟𝑎𝑦 𝑖𝑑𝑥

≡𝑓𝑜𝑜 ≡{𝑣1,𝑣2}

≡𝑓𝑜𝑜(𝑣1,𝑣2)



Related work: program 

matching

 Symbolic Execution based approaches [DSE, UC-KLEE]:

 Bound loop iteration

 try to explore all bound paths 

 Check equivalence on each path

 Recursion-Rule based approaches [SymDiff]:

 Transform loops to function calls

 Use function calls as matching locations

 i.e. try and prove the inputs to each function call are equivalent

 Data\Trace based approaches [DDEC]:

 Use run traces variable values to infer a bi-simulation relation of 
the two programs
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Equivalence-based Partitioning

 We use a disjunctive domain to allow separating equivalent 

paths from differing paths
𝑝𝑟𝑖𝑛𝑡_𝑒𝑥𝑡𝑟𝑎_𝑛𝑢𝑚𝑏𝑒𝑟, 𝑥′ = 𝑥, 𝑖′ = 𝑖 + 1, 𝑥 ≤ 𝑙𝑎𝑠𝑡

∨
¬𝑝𝑟𝑖𝑛𝑡_𝑒𝑥𝑡𝑟𝑎_𝑛𝑢𝑚𝑏𝑒𝑟, 𝑥′ = 𝑥 + 𝑆𝑇𝐸𝑃, 𝑖′ = 𝑖 + 1, 𝑥 ≤ 𝑙𝑎𝑠𝑡

 How do you Join such a domain?

 which sub-states are joined with which?

 We Join and Widen abstract states based on the equivalences 

they preserve 

 the set of variables that hold equivalence

 disjunction size bound at 2|VAR|

 lose some information, but maintain what's important (equivalence)
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Finding Minimal Difference
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𝜎  (𝑉 = 𝑉′)𝜎

¬(𝜎  𝑉 = 𝑉′ )



Partial Order Reduction

 Exploring all interleavings over two programs within 𝑘 steps would 
yield 2𝑘 results

 Since each step can be performed on either P or P’

 For the most part, a single representative is sufficient

 Meaning foreach 0 < 𝑖 ≤ 𝑘 we explore first interpreting all 𝑖 steps over 
P and then 𝑘 − 𝑖 over P’

 No alternation in-between

 Resulting in 𝑘 + 1 results

 Since the domain is commutative and join\widen is only performed 
after each speculative step

 This does mean we miss some interleavings

 But did not pose an issue in our benchmarks

 A small sacrifice to make for scaling
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Full Program Equivalence Checking

 For full program equivalence, we currently use the modular 

approach

 And in the case the callee differs among versions, we assume T

 Future: use the description of difference instead, somehow

 This is the state of the art for equivalence checking

 The only full-program approaches (known to this presenter :) are 

symbolic execution based ones, that try to pin-point differing 

paths

 Usually get poor coverage

 Generally unable to prove equivalence
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Interesting Diff
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int foo(int x, int y) {
int z = 0,w,o;
z++;

...

for (x = 0; x < 2*y ; ++x)
w += 2;

...

if (y > 42) {
z -= 13;
o = z + zoo(3);

x--;
}

...

}

int foo`(int x`, int y`) {
int z` = 1,w`,o`;
z`--;

...

for (x` = 0; x` < y` ; ++x`)
w` += 4;

...

if (y` > 47) {
z` -= 12;
o` = zoo(3);
x`++;

}

...

}

{≡{𝑥,𝑦,𝑤,𝑜}, 𝑧′ = 𝑧 − 1}

{≡ 𝑦,𝑤,𝑜 , 𝑥 = 2𝑥′, 𝑧′ = 𝑧 − 1}

≡ 𝑦,𝑤,𝑜 , 𝑦 ≤ 42, 𝑥 = 2𝑥′, 𝑧′ = 𝑧 − 1

∨
≡ 𝑦,𝑤 , 47 ≥ 𝑦 ≥ 42, 𝑧′ = 𝑧 − 14,

𝑜′ = 𝑧′ + 𝑧𝑜𝑜 3 , … }

∨

≡ 𝑦,𝑤,𝑧 , 𝑦 > 47, 𝑜 = 𝑜′ + 𝑧, 𝑥 = 2𝑥′ − 2


