
Statistical Similarity of Binaries

Yaniv David
Technion, Israel

yanivd@cs.technion.ac.il

Nimrod Partush
Technion, Israel

nimi@cs.technion.ac.il

Eran Yahav
Technion, Israel

yahave@cs.technion.ac.il

Abstract
We address the problem of finding similar procedures in
stripped binaries. We present a new statistical approach for
measuring the similarity between two procedures. Our no-
tion of similarity allows us to find similar code even when
it has been compiled using different compilers, or has been
modified. The main idea is to use similarity by composition:
decompose the code into smaller comparable fragments, de-
fine semantic similarity between fragments, and use sta-
tistical reasoning to lift fragment similarity into similarity
between procedures. We have implemented our approach
in a tool called Esh, and applied it to find various promi-
nent vulnerabilities across compilers and versions, including
Heartbleed, Shellshock and Venom. We show that Esh pro-
duces high accuracy results, with few to no false positives
– a crucial factor in the scenario of vulnerability search in
stripped binaries.
Categories and Subject Descriptors D.3.4 [Processors:
compilers, code generation]; F.3.2 (D.3.1) [Semantics of
Programming Languages: Program analysis];
Keywords static binary analysis; verification-aided similar-
ity; partial equivalence; statistical similarity

1. Introduction
During December 2014, several vulnerabilities were discov-
ered in the prominent implementation of the network time
protocol (NTP) ntpd [1]. As this implementation is the de
facto standard, many products from major vendors were af-
fected, including RedHat’s Linux distribution, Apple’s OSX
and Cisco’s 5900x switches. Because some of these vulner-
abilities were introduced many years ago, different versions

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, contact the Owner/Author.
Request permissions from permissions@acm.org or Publications Dept., ACM, Inc.,
fax +1 (212) 869-0481. Copyright 2016 held by Owner/Author. Publication Rights
Licensed to ACM.
PLDI ’16, June 13 - 17, 2016, Santa Barbara, CA, USA
Copyright c© 2016 ACM 978-1-4503-4261-2/16/06. . . $15.00
DOI: http://dx.doi.org/10.1145/2908080.2908126

have been ported and integrated into many software pack-
ages, ready to be deployed in binary form to home comput-
ers, enterprise servers and even appliance firmware.

A security savvy individual, or more commonly a security
aware company, would want to use a sample of the vulner-
able product (in binary form) to search for the vulnerability
across all the software installed in the organization, where
source-code is mostly not available. Unfortunately, automat-
ically identifying these software packages is extremely chal-
lenging. For example, given a sample from the Debian Linux
distribution, finding other (recent or older) vulnerable ver-
sions of it is already hard. This is because even though older
distributions were probably compiled with the same com-
piler, gcc, they used older gcc versions, producing syntacti-
cally different binary code. Trying to find OSX applications
is even harder, as they are commonly compiled with a dif-
ferent compiler (CLang), and the firmware of an appliance,
using Intel chips, might be compiled with icc (the Intel C
compiler), such that the resulting binary procedures differ
vastly in syntax. We address this challenge by providing an
effective means of searching for semantically similar proce-
dures, at assembly code level.
Problem definition Given a query procedure q and a large
collection T of (target) procedures, in binary form, our goal
is to quantitatively define the similarity of each procedure
t ∈ T to the query q. The main challenge is to define a
semantic notion of similarity that is precise enough to avoid
false positives, but is flexible enough to allow finding the
code in any combination of the following scenarios: (i) the
code was compiled using different compiler versions; (ii)
the code was compiled using different compiler vendors;
and (iii) a different version of the code was compiled (e.g.
a patch). We require a method that can operate without
information about the source code and/or tool-chain used
in the creation of the binaries only of procedures in binary
form.
Existing techniques Previous work on clone detection in bi-
naries [29] can overcome different instruction selections, but
is unable to handle syntactic differences beyond single in-
structions. Binary code search [12] is mostly syntactic and
therefore fails to handle differences that result from differ-
ent compilers. Equivalence checking and semantic differenc-
ing techniques [15, 23, 24, 27] operate at the source-code

target image 𝑖𝑡

query image 𝑖𝑞2query image 𝑖𝑞1

(a)

1

2

34
5

6

1

2

3 4
5

6

similar regions in 𝑖𝑡

similar regions in 𝑖𝑞2similar regions in 𝑖𝑞1

(b)

mov r9, 13h

mov r12, rbx

add rbp, 3

mov rsi, rbp

lea rdi, [r12+3]

mov [r12+2], bl

lea r13d, [rcx+r9]

shr eax, 8

shr eax, 8

lea r14d, [r12+13h]

mov r13, rbx

lea rcx, [r13+3]

mov [r13+1], al

mov [r13+2], r12b

mov rdi, rcx

mov rsi, 14h

mov rdi, rcx

shr eax, 8

mov ecx, r13

add esi, 1h

xor ebx, ebx

test eax, eax

jl short loc_22F4

(c) target code 𝑡

(d) query code 𝑞1 (e) query code 𝑞2

Figure 1. Image vs. Code Similarity by Composition. Query image iq2 is similar to the target image it. Query code q2 is
similar to the target code t. Images courtesy of Irani et al. [10]

level and require a matching (labeling of variables) to oper-
ate. Furthermore, they do not provide quantitative measures
of similarity when procedures are not equivalent. Dynamic
equivalence checking techniques [27] are hard to apply as
they require obtaining sufficient coverage for each proce-
dure. A dynamic approach for binary code search [13] co-
erces execution using a randomized environment to achieve
coverage, but suffers from a high false positive rate, and does
not address or evaluate patching. Data-driven equivalence
checking [30] is aimed at translation validation and is limited
to short segments of assembly code.
Similarity by composition We draw inspiration from Boiman
and Irani’s [10] work on image similarity, where the key idea
is that one image is similar to another if it can be composed
using regions of the other image, and that this similarity can
be quantified using statistical reasoning.

Fig. 1(a) and (b) illustrate the idea of similarity by com-
position for images. Looking at the three images in Fig. 1(a),
we wish to determine which of the two query images, iq1
and iq2, is more similar to the target image, it. Our intuition
is that iq2 is probably more similar to it.

Fig. 1(b) provides some explanation for this intuition.
Looking at this figure, we identify similar regions in iq2 and
it (marked by the numbered outlined segments). Although
the images are not identical, their similarity stems from the
fact that query image iq2 can be composed using significant
(and maybe transformed) regions from target image it. In
contrast, image iq1 shares only two small regions with it, and
indeed we intuitively consider it to be different. These vague
notions are made precise within a statistical framework that
lifts similarity between significant regions into similarity
between images.

In this paper, we show that the general framework of
“similarity by composition” can also be applied to code.
Specifically, we consider assembly code extracted from
stripped binaries (with no debug information). Fig. 1(c), (d),
and (e) show partial assembly code of three procedures.
Snippets (c) and (e) are taken from the OpenSSL procedure

vulnerable to “Heartbleed”, and were compiled using differ-
ent compilers: gcc 4.9 and CLang 3.5, respectively. Snippet
(d) is taken from an unrelated procedure in Coreutils and
compiled using gcc 4.9. For simplicity and brevity, we only
present a small part of the code.

Finding similarity between the procedures using syntac-
tic techniques is challenging, as different compilers can pro-
duce significantly different assembly code. Instead, we de-
compose each procedure to small code segments we name
strands (a strand is a basic-block slice, as explained in Sec-
tion 3.2), and semantically compare the strands to uncover
similarity, and lift the results into procedures.

In Fig. 1(c) & (e), the query code, q2, and the target code,
t, share three matching strands, numbered in the figure as

1 , 2 , and 3 . Each strand is a sequence of instructions,
and strands are considered as matches when they perform
an equivalent computation. In the figure, we mark match-
ing strands using the same circled number. Two syntacti-
cally different strands can be equivalent. For example, the
strands numbered 2 in q2 and t differ syntactically but are
equivalent (up to renaming and ignoring the change of r9).
Furthermore, strands need not be syntactically contiguous.
This is because they are based on data-flow dependencies
rather than on syntactic properties. For example, strand 3 in
the query procedure q2 (mov r12, rbx; lea rdi, [r12+3])
matches the strand mov r13, rbx;lea rcx, [r13+3] in the
target procedure t. In contrast, the code in Fig. 1(d) only
matches the single strand 1 in the target.
Our approach We present a novel notion of similarity for
procedures that is based on the following key components:
Decomposing the procedure into strands: We decompose
procedures into smaller segments we refer to as strands,
which are feasible to compare.
Comparing strands: We use a program verifier [9] to check
whether two strands are semantically equivalent by assum-
ing input equivalence and checking if intermediate and out-
put values are the same. When they are not equivalent, we
define a quantitative notion of strand similarity based on the

proportion of matching values to the total number of values
in the strand.
Statistical reasoning over strands: We present a statistical
framework for reasoning about similarity of whole proce-
dures using strand similarity. We compute a global similar-
ity evidence score between procedures using the sum of the
local evidence scores (LES) between strands. A key aspect
of our framework is that we amplify the similarity scores of
unique strands, expressed by a high LES , and diminish the
significance of “common” strands (with respect to the target
database examined) as they are less indicative of similarity.
Main contributions The contributions of this paper are:

• A framework for reasoning about similarity of proce-
dures in stripped binaries. The main idea is to decompose
procedures into strands, perform semantic comparison of
them, and lift strand similarity into similarity between
procedures using statistical techniques.
• A technique for checking input-output equivalence of

strands of code, where all variables are unlabeled.
• A statistical model that quantifies the probability of simi-

larity between procedures by examining the similarity of
their strands.
• A prototype implementation in a tool called Esh, which

is publicly available at github.com/tech-srl/esh. We com-
pare Esh to previous binary code-search techniques us-
ing challenging search scenarios that combine patched
and non-patched versions of real-world vulnerable pro-
cedures in binary form, compiled with different compiler
versions and vendors. These experiments show that Esh
achieves significantly better results.

2. Overview
In this section, we illustrate our approach informally using
an example.

Given a query procedure from a stripped binary, our goal
is to find similar procedures in other stripped binaries. To
simplify presentation, we illustrate our approach on two
code snippets instead of full procedures. Consider the as-
sembly code of Fig. 2(a). This snippet is taken from a ver-
sion of OpenSSL, which is vulnerable to the Heartbleed bug
[3]. Our goal is to find similar vulnerable code snippets in
our code-base. We would like to define a notion of similarity
that can find matches even when the code has been modified,
or compiled with a different compiler vendors and versions.
For example, the code of Fig. 2(a) was compiled using gcc
v4.9, and the code of Fig. 2(b), originating from the same
source, was compiled using icc v15.0.1. We would like our
approach to find the similarity of these two snippets despite
their noticeable syntactic difference.

We focus on similarity rather than equivalence, as we
would like our approach to apply to code that may have been
patched. Towards that end, we compute a similarity score

1 lea r14d, [r12+13h]
2 mov r13, rax
3 mov eax, r12d
4 lea rcx, [r13+3]
5 shr eax, 8
6 lea rsi, [rbx+3]
7 mov [r13+1], al
8 mov [r13+2], r12b
9 mov rdi, rcx

10 call memcpy
11 mov ecx, r14d
12 mov esi, 18h
13 mov eax, ecx
14 add eax, esi
15 call write_bytes
16 test eax, eax
17 js short loc_2A38

1 mov r9, 13h
2 mov r12, rax
3 mov eax, ebx
4 add rbp, 3
5 mov rsi, rbp
6 lea rdi, [r12+3]
7 mov [r12+2], bl
8 lea r13d, [rbx+r9]
9 shr eax, 8

10 mov [r12+1], al
11 call _intel_memcpy
12 add r9, 5h
13 mov esi, r9d
14 mov ecx, r13d
15 mov eax, ecx
16 add eax, esi
17 call write_bytes
18 mov ebx, eax
19 test ebx, ebx
20 jl short loc_342E

(a) gcc v.4.9 -O3 (b) icc v.15.0.1 -O3

Figure 2. Heartbleed vulnerability code snippets.

assume r12q == rbxt

1 v1q = r12q
2 v2q = 13h + v1q
3 v3q = int_to_ptr(v2q)
4 r14q = v3q
5 v4q = 18h
6 rsiq = v4q
7 v5q = v4q + v3q
8 raxq = v5q

1 v1t = 13h
2 r9t = v1t
3 v2t = rbxt
4 v3t = v2t + v1t
5 v4t = int_to_ptr(v3t)
6 r13t = v4t
7 v5t = v1t + 5
8 rsit = v5t
9 v6t = v5t + v4t

10 raxt = v6t

assert v1q == v2t,v2q == v3t, v3q == v4t,r14q == r13t,
v4q == v5t,rsiq == rsit,v5q == v6t,raxq == raxt

Figure 3. Semantically similar strands.

that captures similarity between (small) partial computations
performed by each procedure.

The main idea of our approach is to decompose the code
to smaller fragments, for which similarity is easy to com-
pute, and use statistical reasoning over fragment similarity
to establish the global similarity between code snippets. To-
wards that end, we have to answer three design questions:
• What is the best way to decompose the code snippets?
• How should the decomposed fragments be compared?
• How can fragment similarity be lifter into find snippet

similarity?
Decomposition into strands We decompose a procedure into
fragments which are feasible to compare. In this work, we
use strands—partial dependence chains, as the basic unit.
Fig. 3 shows two strands obtained from the code snippets
of Fig. 2. For now, ignore the assume and assert operations
added around the strands. The strands in the figure have been
transformed to an Intermediate Verification Language (IVL),
by employing tools from [5, 11]. The IVL abstracts away
from specific assembly instructions, while maintaining the
semantics of the assembly code. A fresh temporary variable
is created for every intermediate value computed through-

https://github.com/tech-srl/esh

1 v1q = r14q
2 v2q = v1q + 1
3 v3q = xor(v2q,v1q)
4 v4q = and(v3q,v2q)
5 v5q = (v4q < 0)
6 FLAGS[OF]q = v5q

1 v1t = r14t
2 v2t = v1t + 16
3 v3t = xor(v2t,v1t)
4 v4t = and(v3t,v2t)
5 v5t = (v4t < 0)
6 FLAGS[OF]t = v5t

Figure 4. Syntactically similar but semantically different
strands.

out the execution. The flow of data between registers is al-
ways through these temporaries. Furthermore, the IVL al-
ways uses the full 64-bit representation of registers (e.g. rax
and not eax) and represents operations on part of the regis-
ter using temporaries and truncation (e.g. mov rbx, al will
be v1 = truncate(rax,8); rbx = v1;). The strands in the
figure have been aligned such that similar instructions of the
two strands appear side by side. This alignment is only for
the purpose of presentation, and our comparison is based on
semantically comparing the strands. We added q and t post-
fixes to the strands’ variables to separate the name spaces of
variables in the two strands and specify one as the query and
the other as the target. This allows us to create a joint pro-
gram that combines the variables from the two strands and
makes assumptions and assertions about their equality.
Comparing a pair of strands To compare a pair of strands,
we create a joint program that combines them, but has a
separate name space for the variables of each strand. We
then explore the space of equality assumptions on the dif-
ferent inputs, and check how these assumptions affect the
equality assertions on the outputs. For example, one choice
for assumptions and assertions is shown in Fig. 3. Techni-
cally, given a pair of strands, we perform the following steps:
(i) add equality assumptions over inputs of the two strands,
(ii) add assertions that check the equality of all output vari-
ables (where output variables also include temporaries), and
(iii) check the assertions using a program verifier and count
how many variables are equivalent. Choosing which vari-
ables to pair when assuming and asserting equality is solved
by searching the space of possible pairs. The choice of the
strand as a small unit of comparison (with a relatively small
number of variables), along with verifier based optimizations
(described in Sec. 5.5), greatly reduce the search space, mak-
ing the use of a verifier feasible.
Match Probability: We define an asymmetric similarity mea-
sure between a query strand, sq, and a target strand, st, as
the percentage of variables from sq that have an equivalent
counterpart in st. We denote this measure by VCP(sq, st). We
later use this measure as a basis for computing the probabil-
ity Pr(sq|st) that a strand sq is input-output equivalent to a
strand st (see Section 3.3.1).

For example, taking sq to be the strand on the left-hand
side of Fig. 3, and st to be the strand on the right-hand
side, VCP(sq, st) = 1, because all 8 variables from the
left-hand side have an equivalent variable on the right-hand
side. However, in the other direction, VCP(st, sq) = 8/9.

We note that no previous approach is able to produce such
a matching, as the equivalent values are computed using
different instructions.

In contrast to Fig. 3, the strands of Fig. 4 (taken from our
corpus as specified in Section 5.1) are very similar syntacti-
cally (differ in just one character), but greatly differ seman-
tically. Syntactic approaches would typically classify such
pairs as matching, leading to a high rate of false positives.
Our semantic comparison identifies that these two strands
are different, despite their significant syntactic overlap, and
yields VCP = 1/6, expressing the vast difference.
Local Evidence of Similarity: Modeling strand similarity us-
ing probability allows us to express other notions of simi-
larity in a natural manner. For example, given a target pro-
cedure t and a query strand sq, we can capture how well sq

can be matched in t by computing the maximal probability
of Pr(sq|st) over any possible strand st in t.

We further define the probability, Pr(sq|H0), of finding a
matching strand for sq at random (where H0 represent all
possible strands). The significance of finding a match for sq

in t can be then defined as:

LES (sq|t) = log
maxst∈t Pr(sq|st)

Pr(sq|H0)
.

LES provides a measure of the significance of the match-
ing of sq with t by comparing it to the matching of sq with
the random source H0. It is important to measure the signifi-
cance of a match, because many strand matches may be due
to common strands introduced by the compiler (e.g., pro-
log/epilog), and therefore not significant in determining a
match between procedures.
Lifting strand similarity into procedure similarity We say
that two procedures are similar if one can be composed
using (significantly similar) parts of the other. Given a query
procedure q and a target procedure t, the LES (sq|t) measure
indicates how significant the match of sq is in t. We can
therefore define global evidence of similarity (GES) between
the procedures q and t by summing LES (sq|t) over all strands
sq in q (as further explained in Sec. 3.1).

The local and global similarity evidence allow us to lift
semantic similarity computed between individual strands
into a statistical notion of similarity between procedures.
Key Aspects of our approach
• Similarity by composition: we decompose procedures

into strands, semantically compare strands, and lift strand
similarity into procedure similarity using statistical tech-
niques.
• Using strand similarity allows us to establish similarity

between procedures even when the procedures are not
equivalent, but still contain statistically significant sim-
ilar strands.
• By performing semantic comparison between strands,

we are able to find similarity across different compilers

versions and vendors (without knowledge of the specifics
of the compilers). In Sec. 5 we compare our approach
to previous work and show the importance of semantic
comparison.

3. Strand-Based Similarity by Composition
In this section, we describe the technical details of our ap-
proach. In Sec. 3.1, we describe the steps for generating sta-
tistical procedure similarity. In Sec. 3.2 we illustrate how
we decompose procedures into the single-path units of ex-
ecution we call strands (step 1). We defer the exact details
of computing similarity between strands (step 2) to Sec-
tion 4, and assume that such a similarity measure is given.
In Sec. 3.3 we define the likelihood and statistical signifi-
cance of a strand, allowing us to quantify similarity using
these probabilistic tools (step 3). In Sec. 3.4, we describe
how whole procedure similarity is computed from statistical
similarity of strands, using global and local evidence scores
(step 4).

3.1 Similarity By Composition

We determine that two procedures are likely to be similar
if non-trivial strands from one can be used to compose the
other, allowing for some (compiler or patch related) trans-
formation. We decompose the procedure to basic blocks, and
then further split each block into strands using a slicing tech-
nique, as described in Sec. 3.2. We check for strand simi-
larity with the aid of a program verifier, as further shown
in Sec. 4. This gives us the flexibility to determine similar-
ity between two strands, i.e., that they are (partially) input-
output equivalent, even if they produce their result using dif-
ferent instructions, register allocation or program ordering.
We then define a Global Evidence Score, GES (q|t), repre-
senting the likelihood that a query procedure q is similar to a
target procedure t. This global score is based on the composi-
tion of multiple Local Evidence Scores (denoted LES (sq|t))
representing the sum of likelihoods that each strand sq ∈ q
has a similar strand st ∈ t:

GES (q|t) =
∑
sq∈q

LES (sq|t) =
∑
sq∈q

log
maxst∈t Pr(sq|st)

Pr(sq|H0)
. (1)

The right-hand side of Eq. 1 shows that the LES for
strand sq is calculated using the ratio between two factors:
(i) the probability, Pr(sq|st), that sq is semantically similar to
one of the strands st ∈ t, where st is the strand that produces
the highest probability (i.e., is most similar to sq), and (ii)
Pr(sq|H0), the probability that this strand matches a random
source. In our context, this means that the strand is com-
monly found in the corpus binaries and does not uniquely
identify the query procedure. This is further described in
Sec. 3.3.

3.2 Procedure Decomposition to Strands

We use a standard control flow graph (CFG) representation
for procedures. We decompose the procedure by applying
slicing [33] on the basic-block level. A strand is the set
of instructions from a block that are required to compute a
certain variable’s value (backward slice from the variable).
Each block is sliced until all variables are covered. As we
handle each basic block separately, the inputs for a block are
variables (registers and memory locations) used before they
are defined in the block. Fig. 3 is an example of a pair of
strands extracted from the blocks in Fig. 1.
Strands as partial program dependence graphs (PDGs)
Strands are a practical compromise over enumerating all
paths in the PDG [14]. All strands are obtained by decom-
posing the PDG at block boundaries. This means that strands
only contain data dependencies, as control dependencies ex-
ist only over block boundaries, while severed data depen-
dencies (e.g., values created outside the block) are marked
as such and used in the comparison process (these are the
inputs, as explained later in Algorithm 1). This approach of
decomposing graphs while making use of loose edges to im-
prove performance is similar to the “extended graphlets” in
[17], yet there the edge contains less information as it is not
connected to a certain variable. Decomposing at block level
yielded precise results for most of our benchmarks. How-
ever, using longer paths can be advantageous when handling
small procedures, where breaking at block level results in
a small number of short blocks that can be easily matched
with various targets. Sec. 6.6 further discusses benchmarks
for which a the small number of blocks yields low accuracy
for Esh.

Algorithm 1: Extract Strands from a Basic Block
Input: b - An array of instructions for a basic-block
Output: strands - b’s strands, along with their inputs

1 unusedInsts← {1, 2, ..., |b|}; strands← [];
2 while unusedInsts , ∅ do
3 maxUsed← max(unusedInsts);
4 unusedInsts \= maxUsed;
5 newStrand← [b[maxUsed]];
6 varsRefed← Ref(b[maxUsed]);
7 varsDefed← Def(b[maxUsed]);
8 for i← (maxUsed − 1)..0 do
9 needed← Def(b[i]) ∩ varsRefed;

10 if needed , ∅ then
11 newStrand += b[i];
12 varsRefed ∪= Ref (b[i]);
13 varsDefed ∪= needed;
14 unusedInsts \= i;

15 inputs← varsRefed \ varsDefed;
16 strands += (newStrand, inputs);

Algorithm 1 uses standard machinery to extract strands
from a basic block, and uses the standard notions of Def
and Ref for the sets of variables defined and referenced
(respectively) in a given instruction.

The process starts by putting all instructions in
unusedInsts, and will end only when this list is empty,
i.e., when every instruction is marked as having been used
in at least one extracted strand. The creation of a new
strand begins by taking the last non-used instruction, as
well as initializing the list of variables referenced in the
strand – varsRefed, and the variables defined in the strand
– varsDefed. Next, all of the previous instructions in the
basic-block are iterated backwards, adding any instruction
which defines a variable referenced in the strand so far (is in
varsRefed) and updating varsRefed and varsDefed with ev-
ery instruction added. When the for loop is finished the new
strand is complete, as every instruction needed to calculate
all of the variables defined inside the basic-block is present.
This does not include the inputs, which are any variables
used in the calculation and not defined in the basic-block.
Note that the backward iteration is crucial for minimizing
the number of strands.

3.3 Statistical Evidence

Given two sets of strands obtained from two procedures for
comparison, we assume a mechanism for computing a simi-
larity measure between two strands based on the proportion
of output variables they agree on when given equivalent in-
puts. We denote this similarity metric by VCP, and defer its
formal definition and computation to Section 4. In this sec-
tion, we assume that the VCP between two strands, sq and
st, is given, and transform it into a probabilistic measure for
strand similarity Pr(sq|st). We then describe how to compute
Pr(sq|H0), the probability of each strand to match a random
process. Using these values we compute the likelihood-ratio,
LR(sq), from which the GES value is composed.

3.3.1 Strand Similarity as a Probability Measure

We denote Pr(sq|t) as the likelihood that a strand, sq, from
the query procedure, q, can be “found” in the target proce-
dure t, i.e., that we can find an equivalent strand st ∈ t.

Pr(sq|t) , max
st∈Ht

Pr(sq|st). (2)

The likelihood Pr(sq|st) that two strands are input-output
equivalent is estimated by applying a sigmoid function (de-
noted g()) over the VCP of the two strands (we set the sig-
moid midpoint to be x0 = 0.5 as VCP(sq, st) ∈ [0, 1]):

Pr(sq|st) , g(VCP(sq, st)) = 1/(1 + e−k(VCP(sq,st)−0.5)). (3)

The use of the logistic function allows us to produce
a probabilistic measure of similarity, where Pr(sq|t) is ap-
proximately 1 when VCP(sq, st) = 1 and nears 0 when
VCP(sq, st) = 0. We experimented with different values to
find the optimal value for the steepness of the sigmoid curve
parameter, k, and found k = 10.0 to be a good value.

Our use of the sigmoid function is similar to its applica-
tion in logistic regression algorithms for classification prob-
lems [18]. The hypothesis hθ(x) is set to be the sigmoid func-
tion of the original hypothesis θT x, resulting in the hypothe-
sis being a probability distribution, hθ(x) , Pr(y = 1|x; θ) =

g(θT x), which reflects the likelihood of a positive classifi-
cation (y = 1) given a sample x. This correlates to Pr(sq|st)
representing the likelihood that sq and st are a positive match
for performing the same calculation.

3.3.2 The Statistical Significance of a Strand

In order to find procedure similarity in binaries, we require
that non-trivial strands of code be matched across these
binaries. This stands in contrast to Eq. 3, where smaller
pieces of code will receive a high likelihood score, since they
perform trivial functionality that can be matched with many
strands. Thus a query strand need not only be similar to the
target, but also have a low probability to occur at random.
For this we introduce the Likelihood Ratio measure:

LR(sq|t) = Pr(sq|t)/Pr(sq|H0). (4)

This measure represents the ratio between the probability
of finding a semantic equivalent of sq in st vs. the probabil-
ity of finding a semantic equivalent at random (from the ran-
dom process H0). Pr(sq|H0) in fact measures the statistical
insignificance of a strand, where a higher probability means
low significance. We estimate the random hypothesis H0 by
averaging the value of Pr(sq|st) over all targets (as it needs
to be computed either way), i.e., Pr(sq|H0) =

∑
st∈T Pr(sq |st)
|T |

where T is the set of all target strands for all targets in the
corpus.

3.4 Local and Global Evidence Scores

After presenting the decomposition of procedures q and t to
strands, and defining the likelihood-ratio for each strand sq

and target t, we can define the Local Evidence Score as the
log of the likelihood-ratio:

LES (sq|t) = log LR(sq|t) = log Pr(sq|t)−log Pr(sq|H0). (5)

This local score reflects the level of confidence for sq

to have a non-trivial semantic equivalent strand in t. The
global score GES (q|t) is simply a summation (Eq. 1) of
all LES (sq|t) values after decomposing q to strands, which
reflects the level of confidence that q can be composed from
non-trivial parts from t and is in fact similar to it.

4. Semantic Strand Similarity
In the previous section, we assumed a procedure that com-
putes semantic strand similarity. In this section, we provide
such a procedure using a program verifier. Given two strands
to compare, the challenge is to define a quantitative mea-
sure of similarity when the strands are not equivalent. We
first provide the formal definitions on which the semantics
of strand similarity are based, and then show how we com-
pute strand similarity using a program verifier.

4.1 Similarity Semantics

Preliminaries We use standard semantics definitions: A pro-
gram state σ is a pair (l, values), mapping the set of program
variables to their concrete value values : Var → Val, at a
certain program location l ∈ Loc. The set of all possible
states of a program P is denoted by ΣP. A program trace
π ∈ Σ∗P is a sequence of states 〈σ0, ..., σn〉 describing a single
execution of the program. The set of all possible traces for a
program is denoted by [[P]]. We also define f irst : Σ∗P → ΣP

and last : Σ∗P → ΣP, which return the first and last state in a
trace respectively.
A strand s ∈ P is therefore a set of traces, s ⊆ [[P]] – the
set of all traces generated by all possible runs of s, consid-
ering all possible assignments to s inputs. We will use this
abstraction to further define strand equivalence and VCP.
Variable correspondence A variable correspondence be-
tween two states, σ1 and σ2, denoted γ : Var1 9 Var2,
is a (partial) function from the variables in σ1 to the vari-
ables in σ2. Note that several variables can be mapped to a
single variable in Var2. Γ(P1, P2) denotes the set of all vari-
able correspondences for the pair of programs (P1, P2). This
matching marks the variables as candidates for input-output
equivalence to be proven by the verifier.
State, trace equivalence Given two states and a correspon-
dence γ, if ∀(v1, v2) ∈ γ : σ1(v1) = σ2(v2), then we say
that these states are equivalent with respect to γ, and denote
them σ1 ≡γ σ2. Given two traces and a correspondence γ
between their last states, if last(π1) ≡γ last(π2), then we say
that these traces are equivalent with respect to γ, and denote
them π1 ≡γ π2.

Definition 1 (Strand equivalence). Given two strands (re-
membering that each strand has inputs as defined in Sec. 3.2
and denoted inputs(s)) and a correspondence γ, we say that
these strands are equivalent with respect to γ, denoted s1 ≡γ
s2 if: (i) every input from s1 is matched with some input from
s2 under γ, and (ii) every pair of traces (π1, π2) ∈ (s1, s2) that
agree on inputs (∀(i1, i2) ∈ (γ ∩ (inputs(s1) × inputs(s2))) :
f irst(π1)(i1) = f irst(π2)(i2)) is equivalent π1 ≡γ π2. This
expresses input-output equivalence.

Definition 2 (State, trace variable containment proportion).
We define the VCP between a query state σq and a target
state σt as the proportion of matched values in σq, denoted
VCP(σq, σt) , |γmax |

|σq |
, where γmax is the maximal vari-

able correspondence (in size) for which the two states are
equivalent, i.e., σq ≡γmax σt, considering all possible gam-
mas. We define the VCP between two traces, VCP(πq, πt),
as VCP(last(πq), last(πt)).

For instance, given valuesq = {x 7→ 3, y 7→ 4}, valuest =

{a 7→ 4}, the maximal correspondence is therefore γmax =

{y 7→ a} as it matches the most possible variables. Therefore
VCP(σq, σt) = 1

2 . We note that it is possible for several

maximal correspondences to exist, and in these cases we
simply pick one of the said candidates.

Definition 3 (Strand VCP). We define the VCP between
two strands as the proportion of matched variables in the γ
that induces the maximal containment proportion over all
pairs of traces, as follows:

VCP(sq, st) ,
max{|γ|

∣∣∣∀(πq, πt) ∈ (sq, st) : πq ≡γ πt}

|Var(sq)|
.

An important observation regarding the VCP is that it
can produce a high matching score for potentially unrelated
pieces of code, for instance if two strands perform the same
calculation but one ends by assigning 0 to all outputs, or if
the result of the computation is used for different purposes.
We did not observe this to be the case, as (i) compiler
optimizations will eliminate such cases where a computation
is not used, and (ii) even if the code is used for different
purposes – it may still suggest similarity, if for example a
portion of the query procedure was embedded in the target.

4.2 Encoding Similarity as a Program Verifier Query

Next we show how we compute a strand’s VCP (Def. 3)
by encoding input-output equivalence, along with procedure
semantics as a program verifier query. The query consists
of three parts, including (i) assuming input equivalence over
the inputs in the variable correspondence (γ), (ii) expressing
query and target strand semantics by sequentially composing
their instructions, and (iii) checking for variable equivalence,
over all possible traces, by adding equality assertions to be
checked by the program verifier.
Program verifiers For the purposes of this paper, we de-
scribe a program verifier simply as a function denoted
Solve : (Proc,Assertion) → (Assertion → {True, False}),
that given a procedure p ∈ Proc with inputs i1, ...in and a
set of assertion statements Φ ⊆ Assertion, is able to deter-
mine which of the assertions in Φ hold, for any execution of
p, under all possible values for i1, ..., in. The assertions in Φ

are mapped to a specific location in p and specify a property
(a formula in first-order logic (FOL)) over p’s variables that
evaluates to True or False according to variable value. Solve
will label an assertion as True if for all variable values under
all input values, the assertion holds. Verifiers usually extend
the program syntax with an assume statement, which allows
the user to specify a formula at desired program locations.
The purpose of this formula is to instruct the verifier to as-
sume the formula to always be true at the location, and try to
prove the assertions encountered using all the assumptions
encountered in the verification pass. In this work, we used
the Boogie program verifier. ([9] provides the inner work-
ings of the verifier.) To allow the use of the verifier, we lifted
assembly code into a non-branching subset of the (C-like)
Boogie IVL (translation details described in Sec. 5.1.1). The
details of BoogieIVL are throughly described in [21].

Procedure calls We treat procedure calls as uninterpreted
functions while computing similarity because, (i) an inter-
procedural approach would considerably limit scalability, as
the verifier would need to reason over the entire call tree of
the procedure (this could be unbounded for recursive calls),
and (ii) we observed that the semantics of calling a procedure
is sufficiently captured in the code leading up to the call
where arguments are prepared, and the trailing code where
the return value is used. Calls to two different procedures that
have the exact same argument preparation process and use
return values in the same way would be deemed similar by
our approach. We note, however, that our approach does not
rely on knowing call targets, as most are omitted in stripped
binaries.

Algorithm 2: Compute Strand VCP
Input: Query pq, Target pt in BoogieIVL
Output: VCP(pq, pt)

1 maxVCP← 0;
2 for γ ∈ Γ(pq, pt) do
3 p← NewProcedure (Inputs(pq) ∪ Inputs(pt));
4 for (iq, it) ∈ (γ ∩ (Inputs(pq) × Inputs(pt)) do
5 p.body.Append (assume iq == it);

6 p.body.Append (pq.body;pt.body);
7 for (vq, vt) ∈ (((Vars(pq) × Vars(pt)) ∩ γ) do
8 p.body.Append (assert vq == vt);

9 Solve (p);
10 if pq ≡γ pt then
11 maxVCP← max(|γ|/|Vars(pq)|,maxVCP);

Calculating strand VCP using a program verifier Next,
we describe how we encode strand similarity as a Boogie
procedure. We present a simplified version of the algorithm
for clarity and brevity, and further describe optimizations in
Sec. 5.5. As our compositional approach alleviates the need
to reason over branches, we can define the encoding assum-
ing single-path programs. For the rest of the paper we sep-
arate procedure variables to Vars(p), denoting all non-input
variables in the procedure, and Inputs(p), denoting only in-
puts. Algorithm 2 receives a pair of Boogie procedures pq, pt

representing the strands q and t, after renaming of variables
to avoid naming collisions. It then proceeds to enumerate
over all possible variable correspondences γ ∈ Γ(pq, pt),
where all of pq’s inputs are matched in compliance with
Def. 1. For each correspondence, a new Boogie procedure
p is created. We start building the procedure body by adding
assumptions of equivalence for every pair of inputs in γ.
This is crucial for checking input-output equivalence. Next,
we append the bodies of the query and target procedures se-
quentially, capturing both strands’ semantics. Lastly, a series
of assertion statements are added, whose goal is to assert the
exit state equivalence by adding an assertion for all variable

pairs matched by γ. The resulting procedure p is then given
to the Solve() function, which uses the program verifier to
check assertion correctness. If all the assertions were proven,
the current VCP is calculated and compared against the best
VCP computed so far, denoted maxVCP. The higher value
is picked, resulting in the maximal VCP at the end of the
loop’s run.

5. Evaluation
Our method’s main advantage is its ability to perform cross-
compiler (and cross-compiler-version) code search on bi-
nary methods, even if the original source-code was slightly
patched. We will harness this ability to find vulnerable code;
we demonstrate our approach by using a known (to be) vul-
nerable binary procedure as a query and trying to locate
other similar procedures in our target database that differ
only in that they are a result of compiling slightly patched
code or using a different compilation tools. These similar
procedures become suspects for being vulnerable as well and
will be checked more thoroughly. We designed our experi-
ments to carefully test every major aspect of the problem at
hand. Finally, we will also show how our method measures
up against other prominent methods in this field.

In Sec. 5.1 we describe the details of our prototype’s
implementation. In Sec. 5.2 we detail the vulnerable and
non-vulnerable code packages that compose our test-bed.
In Sec. 5.3 we show how our test-bed was built and how
this structure enabled us to isolate the different aspects of
the problem domain. In Sec. 5.4 we explain the ROC &
CROC classifier evaluation tools that we used to evaluate our
method’s success. In Sec. 5.5 we detail the different heuris-
tics we employed in our prototype to improve performance
without undermining our results.

5.1 Test-Bed Creation and Prototype Implementation

We implemented a prototype of our approach in a tool called
Esh. Our prototype accepts a query procedure and database
of procedures (the targets), residing in executable files, as
input in binary form. Before the procedures can be compared
using our method, we need to divide them (from whole
executables into single procedures) and “lift” them into the
BoogieIVL to enable the use of its verifier.

5.1.1 Lifting Assembly Code into BoogieIVL

Each binary executable was first divided to procedures using
a custom IDA Pro (the Interactive DisAssembler) [4] Python
script, which outputs a single file for every procedure. BAP
(Binary Analysis Framework) [11] “lifts” the binary proce-
dure into LLVM IR [20] code, which manipulates a machine
state represented by global variables. An important observa-
tion, and this was shown in Fig. 3 & Fig. 4, is that translated
code is in Single Static Assignment (SSA) form, which is
crucial for an effective calculation of the VCP (Def. 3). The
SMACK (Bounded Software Verifier) [5] translator is used to

translate the LLVM IR into BoogieIVL. Finally, strands are ex-
tracted from the blocks of the procedure’s CFG.

Alongside Esh, we performed all the experiments on the
prototype implementation of [12] called TRACY. Sec. 6.3
shows a detailed analysis of these experiments.

Our prototype was implemented with a mixture of C#
(for Boogie framework interaction) Python. The full source
code & installation guide are published on Github, and the
prototype was deployed on a server with four Intel Xeon
E5-2670(2.60GHz) processors, 377 GiB of RAM, running
Ubuntu 14.04.2 LTS.

5.2 Using Vulnerable Code as Queries

To make sure the experiments put our method to a real-world
test scenario, we incorporated eight real vulnerable code
packages in the test-bed. The specific Common Vulnerabili-
ties and Exposures (CVEs) are detailed in Tab. 1. The rest of
the target database was composed from randomly selected
open-source packages from the Coreutils [2] package.

All code packages were compiled using the default set-
tings, resulting in most of them being optimized using the
-O2 optimization level while a few, like OpenSSL, default
to -O3. All executables were complied to the x86_64 (64-
bit) architecture as default. Following this we decided to
focus our system’s implementation efforts on this architec-
ture. Note that our system can be easily expanded to sup-
port x86 (32bit) and even other chip-sets (assuming our tool-
chain provides or is extended to provide support for it). After
compilation we removed all debug information from the ex-
ecutables. After compiling the source-code into binaries, our
target corpus contained 1500 different procedures.

5.3 Testing Different Aspects of the Problem Separately

Many previous techniques suffered from a high rate of false
positives, especially as the code corpus grew. We will show
one cause for such incidents using a general example.

[28] shows that the compiler produces a large amount of
compiler-specific code, such as the code for its control struc-
tures, so much so that the compiler can be identified using
this code. This is an example of a common pitfall for meth-
ods in the fields of binary code search: if the comparison
process is not precise enough when comparing procedures
compiled by a different compiler, a low similarity score can
be wrongly assigned for these procedures on the basis of
the generating compiler alone. This is due to the compiler-
centric code taking precedence over the real semantics of the
code, instead of being identified as common code and having
its importance reduced in the score calculation.

In our context, the problem can be divided into three vec-
tors: (i) different compiler versions, (ii) different compiler
vendors, and (iii) source-code patches.
Different versions of the same compiler Before attempting
cross-compiler matching, we first evaluated our method on
binaries compiled using different versions of the same com-
piler. We therefore compiled the last vulnerable version of

each package mentioned in Sec. 5.2 using the gcc compiler
versions 4.{6,8,9}. Next we performed the same process
with the CLang compiler versions 3.{4,5}, and again with
the icc compiler versions 15.0.1 and 14.0.4.
Cross-compiler search Next, we evaluated our approach by
searching procedures compiled across different compilers.
An important aspect of this evaluation process was alternat-
ing the query used, each time selecting the query from a dif-
ferent compiler. This also ensured that our method is not bi-
ased towards a certain compiler. As explained in Section 3,
our matching method is not symmetric, and so examining
these different scenarios will provide evidence for the valid-
ity of this asymmetric approach.
Patched source-code The last vector we wish to explore is
patching. We define a patch as any modification of source-
code that changes the semantics of the procedure. The com-
mon case for this is when the procedure’s code is altered, yet
changes to other procedures or data-structures can affect the
semantics as well. We predict that precision will decline as
the size of the patch grows and the procedures exhibit greater
semantic difference.

5.4 Evaluating Our Method

A naive approach to evaluating a method which produces a
quantitative similarity score is to try and find a “noise thresh-
old”. This threshold transforms the quantitative method into
a binary classifier by marking all pairs of procedures with a
score above the threshold as a match, and the rest as a non
match.

Alas, for most cases there is no clear way to compute
or detect one threshold which creates a clear separation
between true and false positives for all experiments. As this
is also true for our method, we will evaluate our tool by
examining the results of our experiments as a ranked list,
and use a measure which reflects whether the true positives
are ranked at the top of that list.
Evaluating classifiers with ROC The receiver operating
characteristic (ROC) is a standard tool in evaluation of
threshold based classifiers. The classifier is scored by test-
ing all of the possible thresholds consecutively, enabling us
to treat each method as a binary classifier (producing 1 if
the similarity score is above the threshold). For binary clas-
sifiers, accuracy is determined using the True Positive (TP,
the samples we know are positive), True Negative (TN, the
samples we know are negative), Positive (P, the samples clas-
sified as positive) and Negative (N, the samples classified as
negative) as follows: Accuracy = (T P + T N)/(P + N). Plot-
ting the results for all the different thresholds on the same
graph yields a curve; the area under this curve (AUC) is
regarded as the accuracy of the proposed classifier.
Evaluating classifiers with CROC Concentrated ROC [32]
is an improvement over ROC that addresses the problem
of “early retrieval” – where the corpus size is huge and
the number of true positives is low. The idea behind the

CROC method is to better measure accuracy in a scenario
with a low number of TPs. The method assigns a higher
grade to classifiers that provide a low number of candidate
matches for a query (i.e., it penalizes false positives more
aggressively than ROC). This is appropriate in our setting,
as manually verifying a match is a costly operation for a
human expert. Moreover, software development is inherently
based on re-use, so similar procedures should not appear in
the same executable (so each executable will contain at most
one TP).

5.5 Enabling the Use of Powerful Semantic Tools

Esh Performance Our initial experiments showed the naive
use of program verifiers to be infeasible, resulting in many
hours of computation for each pair of procedures. In the fol-
lowing subsection we describe various optimizations to our
algorithm which reduced the time required for comparing a
pair of procedures to roughly 3 minutes on average on an
8-core Ubuntu machine. We emphasize that our approach is
embarrassingly parallelizable, as verifier queries can be per-
formed independently, allowing performance improvements
linearly to the number of computation cores.
Algorithm 2 optimizations We first presented the VCP com-
putation algorithm in a simplified form with no optimiza-
tions. To avoid enumerating over all variable correspon-
dences in Γ(pq, pt), in our optimized implementation we
enumerated over inputs only (Inputs(pq)× Inputs(pt)). Fur-
thermore, we did not allow multiple inputs in pq to be
matched with a single input in pt (γ was one-to-one) and
only allowed for correspondences that matched all of pq in-
puts. This reduced the number of outer loop iterations to
max(|Iq|!, |It |!). We further reduced this by maintaining typ-
ing in matches.

For each matching of the inputs, the non-input variable
matching part of γ starts out simply as Var(pq) × Var(pt),
while maintaining types. We further perform a data-flow
analysis to remove variable pairs that have no chance of be-
ing matched, as their calculation uses inputs that were not
matched with an initial assumption (were not in γ). Allow-
ing for all possible matchings (up to typing and dataflow
analysis) means that we check all possible correspondences
for non-inputs at once. We do this by parsing the output of
the Boogie verifier that specifies which of the equality asser-
tions hold and which fail. Unmatched variables are removed,
leaving only equivalent pairs in γ. Finally, multiple match-
ings for variables are removed (γ must be a function over q’s
variables according to Def. 3) and the VCP is calculated.
Discarding trivial strands and impractical matches As
mentioned in Sec. 3.3, trivial strands receive low LES sim-
ilarity scores. Thus smaller strands are less likely to gener-
ate evidence for global similarity GES . We therefore estab-
lished a minimal threshold for the number of variables re-
quired in a strand in order that it be considered in the similar-
ity computation (5 in our experiments), and did not produce

verifier queries for strands smaller than the said threshold.
We further avoided trying to match pairs of strands which
vary greatly in size. We used a ratio threshold, set to 0.5 in
our experiments, meaning that we will attempt to match a
query strand only with target strands that have at least half
the number of variables (i.e. a minimal value of VCP = 0.5
is required) or at most twice the number of variables (avoid-
ing matching with “giant” strands, which are likely to be
matched with many strands).
Batching verifier queries To further save on the cost of
performing a separate verifier query for each input match-
ing (which usually contains a small number of assertions),
we batch together multiple queries. As we wanted to al-
low procedure knowledge gathered by the verifier to be re-
used by subsequent queries, we embedded several possi-
ble γ correspondences in the same procedure by using the
non-deterministic branch mechanism in Boogie (further ex-
plained in [21]) to make the verifier consider assumptions
and check assertions over several paths. We also batched to-
gether different strand procedures up to a threshold of 50,000
assertions per query.

6. Results
6.1 Finding Heartbleed

f

CLang icc gcc icc

3.5 3.4 3.5 15 14 4.9 4.8 4.6 15

f e

g

e f f

e g f f
f g

openssl coreutils 8.23bash 4.3

𝐺𝐸𝑆

Compiler version (top), and vendor (bottom)

0

1

0.333

15
icc
15 1414

CLang

3.5

0.419

Figure 5. Experiment #1 – Successfully finding 12 proce-
dure variants of Heartbleed.

To better understand our evaluation process and test-bed de-
sign, we start by walking through experiment #1 from Tab. 1.
The query for this experiment was the “Heartbleed” vulner-
able procedure from openssl-1.0.1f, compiled with CLang
3.5. Each bar in Fig. 5 represents a single target procedure,
and the height of the bar represents the GES similarity score
(normalized) against the query. The specific compiler vendor
and version were noted below the graph (on the X axis) the
source package and version above it. Bars filled green repre-
sent procedures originating from the same code as the query
(i.e. “Heartbleed”) but vary in compilation or source code
version (the exact code version openssl-1.0.1{e,g,f} is

Alias/Method S-VCP S-LOG Esh
CVE/Stats #BB # Strands FP ROC CROC FP ROC CROC FP ROC CROC

1 Heartbleed 2014-0160 15 92 107 0.967 0.814 0 1.000 1.000 0 1.000 1.000
2 Shellshock 2014-6271 136 430 246 0.866 0.452 3 0.999 0.995 3 0.999 0.996
3 Venom 2015-3456 13 67 0 1.000 1.000 0 1.000 1.000 0 1.000 1.000
4 Clobberin’ Time 2014-9295 41 233 351 0.797 0.343 65 0.987 0.924 19 0.993 0.956
5 Shellshock #2 2014-7169 88 294 175 0.889 0.541 40 0.987 0.920 0 1.000 1.000
6 ws-snmp 2011-0444 6 98 42 0.981 0.879 5 0.999 0.990 1 1.000 0.997
7 wget 2014-4877 94 181 332 0.885 0.600 11 0.998 0.988 0 1.000 1.000
8 ffmpeg 2015-6826 11 87 222 0.9212 0.6589 97 0.9808 0.8954 0 1.000 1.000

Table 1. The ROC, CROC and false positives (FP) for our query search experiments

specified over the bar itself). All unrelated procedures were
left blank.

As we can see from the results in Fig. 5, our method gives
high scores to all other similar versions of the “Heartbleed”
procedure, despite them being compiled using different com-
pilers, different compiler versions or from a patched source
code. A gap of 0.08 in the GES score exists between the true
positives from the rest of the procedures. (0.419 for the icc
15 compiled procedure of openssl-1.0.1g “Heartbleed” vs.
0.333 for the bash 4.3 “ShellShock” procedure compiled
with Clang 3.5). It is important to note that we will not try
to establish a fixed threshold to evaluate the quality of these
results. As mentioned, this clean separation between the true
positives and the false positives is not always possible. In-
stead, this result and others, as shown in the following sec-
tions, are evaluated according to the produced ranking. The
result in Fig. 5 receives a ROC = CROC = 1.0 score as it
puts all of the true positives in the top of the ranking.

6.2 Decomposing Our Method into Sub-methods

When examining our method bottom up, we can divide it
into three layers:

• S-VCP: The first layer of our method is the way we
calculate the VCP between strands. Without the use of
the statistical processing, we still define a similarity score
as:

∑
st∈T maxsq∈Q(VCP(st, sq)). This approach attempts

to generalize the VCP from a pair of strands to a pair of
procedures by counting the maximal number of matched
variables in the entire procedure.
• S-LOG: The next layer of our approach incorporates the

statistical significance of every query strand, by using
local and global significance. By alternatively defining
Pr(sq, st) = VCP(sq, st) and applying it to the LES
and GES equations, we can see how our method looks
without applying the sigmoid function to the VCP.
• Esh: Adding the use of the sigmoid function results in our

full method as described in Section 3

To fully justify and explain each layer of our method,
Tab. 1 shows the results of each sub-method compared with
our full method, in terms of (i) false positives (FT), and (i)
ROC & CROC (explained in Sec. 5.4). Note that we count
the number of false positives as determined by a human ex-

aminer who receives the list of procedures sorted by simi-
larity scores, and we define the number of false positives as
the number of non-matching procedures the human exam-
iner will have to test until all the true similar procedures are
found. The effectiveness of a method can be measured more
precisely and quickly by using CROC. We also included ad-
ditional information about the number of basic-blocks and
the number of strands extracted from them, and the CVE for
every vulnerable procedure we attempted to find.

These results clearly show that each layer of our method
increases its accuracy. Comparison of the different experi-
ments shows that CROC & ROC scores do more than simply
count the number of false positives for every threshold they
compare the rate by which the false positive rate grows. (In-
formally, this may be regarded as a prediction of the number
of attempts after which the human researcher will give up.)
An important point is that the size of the query, in terms of
the number of basic blocks or strands, does not directly cor-
relate with easier matching.

Experiment #3 shows an interesting event, where even S-
VCP gets a perfect score. Upon examination of the query
procedure, we discovered that this occurs because the said
procedure contains several distinct numeric values which are
only matched against similar procedures. (These are used to
explore a data structure used to communicate with the QEMU
floppy device.)

Examining the results as a whole, we see that in more than
half of the experiments the use of S-VCP, which doesn’t em-
ploy the statistical amplification of strands, results in a high
number of false positives. To understand this better, we per-
formed a thorough analysis of experiment #5. When we ex-
amine the values of Pr(sq|H0), which express the frequency
of appearance of strand sq, we see that several strands get an
unusually high score (appear more frequently). One of these
strands was found to be a sequence of push REG instructions,
which are commonplace for a procedure prologue.

6.3 Comparison of TRACY and Esh

Following our explanation of the different problem aspects
in Sec. 5.3, we tested both tools, with a focus on experiment
number one in Tab. 1. Each line in Tab. 2 represents a
single experiment; the 3in one of the columns specifies
that this specific problem aspect is applied: (i) Compiler
version from the same vendor, (ii) Cross-compiler, meaning

Versions Cross Patches TRACY (Ratio-70) Esh
3 1.0000 1.0000

3 0.6764 1.0000
3 1.0000 1.0000

3 3 0.5147 1.0000
3 3 0.4117 1.0000

3 3 0.8230 1.0000
3 3 3 0.3529 1.0000

Table 2. Comparing TRACY and Esh on different problem
aspects.

different compiler vendors, and (iii) applying patches to the
code. For example, when (i) and (ii) are checked together
this means that all variations of queries created using all
compiler vendors and compiler versions were put in the
target database.

As we can see, because TRACY was designed to handle
patches, it achieves a perfect grade when dealing them.
Moreover, TRACY can successfully handle the different com-
piler versions on their own. However when it is used in a
cross-compiler search, its accuracy begins to plummet. Fur-
thermore, when any two problem aspects are combined, and
especially when all three are addressed, the method become
practically unusable.

6.4 Evaluating BinDiff

BinDiff [6] is a tool for comparing whole executables/li-
braries by matching all the procedures within these libraries.
It works by performing syntactic and structural matching re-
lying mostly on heuristics. The heuristic features over pro-
cedures which are the basis for similarity include: the num-
ber of jumps, the place of a given procedure in a call-chain,
the number of basic blocks, and the name of the procedure
(which is unavailable in stripped binaries). Detailed infor-
mation about how this tool works can be found in [7], along
with a clear statment that BinDiff ignores the semantics of
concrete assembly-level instructions.

Tab. 3 shows the results of running BinDiff on each of
the procedures in Tab. 1. As BinDiff operates on whole
executables/libraries, the query/target was a whole library
containing the original vulnerability. We only compared one
target for each query, the same library compiled with a
different vendor’s compiler, and patched (for the queries
where patching was evaluated). BinDiff failed to find the
correct match in all experiments but two. The experiments
in which BinDiff found the correct match are those where
the number of blocks and branches remained the same, and
is relatively small, which is consistent with [7].

6.5 Pairwise Comparison

Fig. 6 shows the similarity measures produced in an all-vs-
all experiment, where 40 queries were chosen at random
from our corpus and compared. The result is shown in heat-
map form, where the axes represent individual queries (X
and Y are the same list of queries, in the same order) and
each pixel’s intensity represents the similarity score GES

Alias Matched? Similarity Confidence
Heartbleed 7 - -
Shellshock 7 - -
Venom 7 - -
Clobberin’ Time 7 - -
Shellshock #2 7 - -
ws-snmp 3 0.89 0.91
wget 7 - -
ffmpeg 3 0.72 0.79

Table 3. Evaluating BinDiff

value (Eq. 1) for the query-target pair. Queries that originate
from the same procedure (but are compiled with different
compilers, or patched) are coalesced. Different procedures
are separated by ticks. We included at least two different
compilations for each procedure. The first procedure (left-
most on the X, bottom on Y axis) is ftp_syst() from wget
1.8, queried in 6 different compilations. The second is taken
from ffmpeg 2.4.6, queried in 7 different compilations. The
rest are taken from Coreutils 8.23. The average ROC and
CROC values for the experiment were 0.986 and 0.959 re-
spectively.

wget-1.8:
ftp_syst()

ffmpeg-2.4.6:
ff_rv34_decode_

init_thread_copy()

compare_nodes()

i_write()

create_hard_link()

cached_umask()

print_stat()

default_format()

dev_ino_compare()

parse_integer()

Figure 6. All vs. all experiment result in heat map form
(pixel intensity = similarity GES measure).

Several observations can be made from Fig. 6:

1. The graph’s diagonal represents the “ground truth” i.e.,
each query is matched perfectly with itself.

2. Our GES measure is not symmetrical (as it is based on
the asymmetrical VCP metric).

3. Esh provides a very clear distinction for ffmpeg-2.4.6’s
ff_rv34_decode_init_thread_copy(), marked with a
dashed region numbered 1 , where all compiled queries
of the procedure receive high GES scores when com-
pared with each other and low ones when compared with
random code. In general, Esh correctly matches proce-
dures compiled with different compilers, as the pattern of
“boxes” along the diagonal shows.

4. Groups of queries that originate from the same procedure
generally receive similar GES values (i.e. similar shade)
when compared to groups of targets that originate from
the same (but different from the queries’) code.

Although some procedures, such as default_format(),
seem to perform poorly as they have high GES matches with
wrong targets (marked with a dashed region numbered 2),
the correct evaluation of the matching should be relative to
the correct matching. For default_format(), the GES val-
ues of the correct matching is high (specified by dark pixels
around the diagonal), so relative to that, the set of wrong
matchings (somewhat dark pixels in the middle) becomes
less significant, which is reflected by a ROC = .993 and
CROC = .960 AUC score.

6.6 Limitations

In this subsection we discuss the limitations of our approach
using study cases of procedures where Esh yields low recall
and precision.
“Trivial” procedures and Wrappers Our approach relies on
matching semantically similar, non-trivial fragments of ex-
ecution. Thus, when matching a very small query (i.e. a
“trivial” procedure), we are forced to rely on the statisti-
cal significance of a very small number of relatively short
strands, which yields poor results. Wrappers are procedures
that mostly contain calls to other procedures, and hold very
little logic of their own e.g. the exit_cleanup() procedure
in Fig. 7. As we operate on stripped binaries, we cannot rely
on identifiers like procedure names to try and match strands
based on procedure calls.

static void exit_cleanup (void) {
if (temphead)
{
struct cs_status cs = cs_enter ();
cleanup ();
cs_leave (cs);

}
close_stdout ();

}

Figure 7. Wrapper exit_cleanup procedure from sort.c of
Coreutils 8.23

Generic procedures The C concatenation preprocessor di-
rective (##) is sometimes used as a mechanism for generics,
where “template” procedures are created, that have similar
structure but vary in type, or use a function pointer to pro-
vide different functionality as shown in Fig. 8, where dif-
ferent string comparison procedures are created to compare
creation, modification and access time of a file. As these hold
the same general structure (and are specifically small), Esh
deems the whole set of procedures similar. We do not con-
sider these matches to be strict false positives, as the pro-
cedures are in fact similar in structure. Note that this prob-
lem only arises when these types of procedures are used as
queries, as it is not clear whether the different variants should

be considered as true positives (they perform similar seman-
tics) or false positives (as they might operate on different
data structures).

#define DEFINE_SORT_FUNCTIONS(key_name, key_cmp_func) \
static int strcmp_##key_name (V a, V b) \
{ return key_cmp_func (a, b, strcmp); }

...

DEFINE_SORT_FUNCTIONS (ctime, cmp_ctime)
DEFINE_SORT_FUNCTIONS (mtime, cmp_mtime)
DEFINE_SORT_FUNCTIONS (atime, cmp_atime)

Figure 8. DEFINE_SORT_FUNCTIONS macro for creating
“template” procedures in ls.c of Coreutils 8.23

7. Related Work
In this section, we briefly describe closely related work.
Equivalence checking and semantic differencing [23, 24,
27] are aimed at proving equivalence and describing differ-
ences between (versions of) procedures in high-level code,
and do not apply to searching for similarity in machine code.
The authors of [23, 24] offer some handling for loops, but
apply computationally expensive abstract domain libraries,
which do not scale in our setting. Sharma et al. [30] present a
technique for proving equivalence between high-level code
and machine code, with loops, by trying to find a simula-
tion relation between the two. However the search is com-
putationally demanding and will not scale. Lahiri et al. [19]
narrow the scope to assumed-to-be but cannot-be-proved-to-
be-equivalent snippets of binary code, and attempts to find a
set of changes (add or delete) to complete the proof. While
having interesting implications for our problem, the assump-
tion of a variable mapping encumbers the transition. Ng and
Prakash [22] use symbolic execution for similarity score cal-
culation, but it is not geared towards cross-compiler search,
and is limited to handling patched procedures (specifically,
only handles one calling convention and rejects procedures
based on the number of inputs.)
Compiler bug-finding Hawblitzel et al. [15] present a tech-
nique that handles compiled versions of the same procedure
from different compilers. Their goal is to identify root causes
of compiler bugs, and their approach cannot be directly ap-
plied to our setting as they: (i) require strict equivalence and
thus even a slight change would be deemed a bug, (ii) know
the IL originated from the same code allowing them to easily
match inputs and outputs (i.e. these are labeled) for solving,
which is not the case for machine code, and (iii) offer no
method for segmenting procedures and thus are limited in
handling loops (they use loop unrolling up to 2 iterations).
Dynamic methods Egele et al. [13] present a dynamic ap-
proach which executes the procedure in a randomized envi-
ronment and compares the side effects of the machine for
similarity. As they base the similarity on a single random-
ized run, similarity may occur by chance, especially since

they coerce execution of certain paths to achieve full cov-
erage. Their evaluation indeed outperforms [6]. However, it
is still wanting as they rank similar functions in the top 10
in only 77% of the cases, and do not evaluate over patched
versions.

An interesting method by Pewny et al. [25] uses a transi-
tion to an intermediate language (VEX-IR), a simplification
using the Z3 theorem prover, sampling and a hashing-based
comparison metric. In their results they report several prob-
lems with false positives. We believe that this is because
sampling alone is used to match two basic-blocks without
proving the match, and that basic-blocks are not weighted
against how common they are in the corpus (and these basic-
blocks might be a compilation by-product). Moreover, the
goal of their method is to find clones for whole binaries.
Thus, it might be hard to apply in situations where patch-
ing was performed.
Structure-based static methods Jacobson et al. [16] attempt
to fingerprint binary procedures using the sequence of sys-
tem calls used in the procedure. This approach is unstable to
patching, and is only applicable to procedures which contain
no indirect calls or use system calls directly.

Smith and Horwitz [31] recognized the importance of sta-
tistical significance for similarity problems, yet their method
is geared towards source-code and employs n-grams, which
were shown ([12]) to be a weak representation for binary
similarity tasks.

The authors of [26] show an interesting approach for
finding similarity using expression trees and their similar-
ity to each other, but this approach is vulnerable to code-
motion and is not suited to cross-compiler search as the dif-
ferent compilers generate different calculation “shapes” for
the same calculation.
Detecting software plagiarism Moss [8] (Measure Of Soft-
ware Similarity) is an automatic system for determining
the similarity of programs. To date, the main application
of Moss has been in detecting plagiarism in programming
classes. Moss implements some basic ideas that resemble our
approach: (i) it decomposes programs and checks for frag-
ment similarity and (ii) it provides the ability to ignore com-
mon code. However, in Moss the code is broken down to
lines and checked for an exact syntactic match, while Esh
decomposes at block level and checks for semantic similar-
ity. Furthermore, in Moss the ignored common code must be
supplied by the user as the homework base template code,
which is expected to appear in all submissions, while Esh
finds common strands by statistical analysis. All the ideas
implemented in Moss are preliminary ideas that bear resem-
blance to ours but are not fully developed in a research paper
or evaluated by experiments over binaries.

8. Conclusions
We presented a new statistical technique for measuring sim-
ilarity between procedures. The main idea is to decompose

procedures to smaller comparable fragments, define seman-
tic similarity between them, and use statistical reasoning to
lift fragment similarity into similarity between procedures.
We implemented our technique, and applied it to find vari-
ous prominent vulnerabilities across compilers and versions,
including Heartbleed, Shellshock and Venom.

Our statistical notion of similarity is general, and not lim-
ited to binaries. We applied it to binaries where the utility
of other techniques (that use the structure of the code) is
severely limited. In this paper, we used our notion of sim-
ilarity for retrieval. In the future, we plan to investigate the
use of our technique for clustering and classification.

Acknowledgment
We would like to thank Michal Irani for lively discussions,
and for permitting the use of figures from [10]. We would
like to thank Armando Solar-Lezama, our shepherd, for
helping us improve and clarify the paper. We would like
to thank Noam Shalev for his inspirational remarks.

The research leading to these results has received fund-
ing from the European Union’s Seventh Framework Pro-
gramme (FP7) under grant agreement no. 615688 - ERC-
COG-PRIME and the Israel Ministry of Science and Tech-
nology, grant no. 3-9779.

References
[1] Clobberingtime: Cves, and affected products. http://www.
kb.cert.org/vuls/id/852879.

[2] Gnu coreutils. http://www.gnu.org/software/
coreutils.

[3] Heartbleed vulnerability cve information. https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2014-0160.

[4] Hex-rays IDAPRO. http://www.hex-rays.com.

[5] Smack: A bounded software verifier for c programs. https:
//github.com/smackers/smack.

[6] zynamics bindiff. http://www.zynamics.com/bindiff.
html.

[7] zynamics bindiff manual - understanding bindiff.
www.zynamics.com/bindiff/manual/index.html#
chapUnderstanding.

[8] Aiken, A. Moss. https://theory.stanford.edu/
~aiken/moss/.

[9] Barnett, M., Chang, B. E., DeLine, R., Jacobs, B., and Leino,
K. R. M. Boogie: A modular reusable verifier for object-
oriented programs. In Formal Methods for Components and
Objects, 4th International Symposium, FMCO 2005, Amster-
dam, The Netherlands, November 1-4, 2005, Revised Lectures
(2005), pp. 364–387.

[10] Boiman, O., and Irani, M. Similarity by composition. In NIPS
(2006), MIT Press, pp. 177–184.

[11] Brumley, D., Jager, I., Avgerinos, T., and Schwartz, E. J.
Bap: A binary analysis platformIn Proceedings of the 23rd
International Conference on Computer Aided Verification
(2011), CAV’11, Springer-Verlag, pp. 463–469.

http://www.kb.cert.org/vuls/id/852879
http://www.kb.cert.org/vuls/id/852879
http://www.gnu.org/software/coreutils
http://www.gnu.org/software/coreutils
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
http://www.hex-rays.com
https://github.com/smackers/smack
https://github.com/smackers/smack
http://www.zynamics.com/bindiff.html
http://www.zynamics.com/bindiff.html
www.zynamics.com/bindiff/manual/index.html#chapUnderstanding
www.zynamics.com/bindiff/manual/index.html#chapUnderstanding
https://theory.stanford.edu/~aiken/moss/
https://theory.stanford.edu/~aiken/moss/

[12] David, Y., and Yahav, E. Tracelet-based code search in ex-
ecutablesIn Proceedings of the 35th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation
(2014), PLDI ’14, ACM, pp. 349–360.

[13] Egele, M., Woo, M., Chapman, P., and Brumley, D. Blanket
execution: Dynamic similarity testing for program binaries
and components. In Proceedings of the 23rd USENIX Security
Symposium, San Diego, CA, USA, August 20-22, 2014. (2014),
pp. 303–317.

[14] Ferrante, J., Ottenstein, K. J., and Warren, J. D. The
program dependence graph and its use in optimization. ACM
Trans. Program. Lang. Syst. 9, 3 (1987), 319–349.

[15] Hawblitzel, C., Lahiri, S. K., Pawar, K., Hashmi, H., Gokbu-
lut, S., Fernando, L., Detlefs, D., and Wadsworth, S. Will
you still compile me tomorrow? static cross-version com-
piler validation. In Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, ESEC/FSE’13,
Saint Petersburg, Russian Federation, August 18-26, 2013
(2013), pp. 191–201.

[16] Jacobson, E. R., Rosenblum, N., and Miller, B. P. Labeling li-
brary functions in stripped binariesIn Proceedings of the 10th
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools (2011), PASTE ’11, ACM, pp. 1–8.

[17] Khoo, W. M., Mycroft, A., and Anderson, R. Rendezvous:
A search engine for binary codeIn Proceedings of the 10th
Working Conference on Mining Software Repositories (2013),
MSR ’13, IEEE Press, pp. 329–338.

[18] Kleinbaum, D. G., and Klein, M. Analysis of Matched Data
Using Logistic Regression. Springer, 2010.

[19] Lahiri, S. K., Sinha, R., and Hawblitzel, C. Automatic root-
causing for program equivalence failures in binaries. In Com-
puter Aided Verification - 27th International Conference, CAV
2015, San Francisco, CA, USA, July 18-24, 2015, Proceed-
ings, Part I (2015), pp. 362–379.

[20] Lattner, C., and Adve, V. Llvm: A compilation framework
for lifelong program analysis & transformation. In Code
Generation and Optimization, 2004. CGO 2004. International
Symposium on (2004), IEEE, pp. 75–86.

[21] Leino, K. R. M. This is boogie 2. http://research.
microsoft.com/en-us/um/people/leino/papers/
krml178.pdf.

[22] Ng, B. H., and Prakash, A. Expose: Discovering poten-
tial binary code re-use. In Computer Software and Applica-
tions Conference (COMPSAC), 2013 IEEE 37th Annual (July
2013), pp. 492–501.

[23] Partush, N., and Yahav, E. Static Analysis: 20th International
Symposium, SAS 2013, Seattle, WA, USA, June 20-22, 2013.

Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg,
2013, ch. Abstract Semantic Differencing for Numerical Pro-
grams, pp. 238–258.

[24] Partush, N., and Yahav, E. Abstract semantic differenc-
ing via speculative correlation. In Proceedings of the 2014
ACM International Conference on Object Oriented Program-
ming Systems Languages& Applications, OOPSLA 2014, part
of SPLASH 2014, Portland, OR, USA, October 20-24, 2014
(2014), pp. 811–828.

[25] Pewny, J., Garmany, B., Gawlik, R., Rossow, C., and Holz, T.
Cross-architecture bug search in binary executables. In 2015
IEEE Symposium on Security and Privacy, SP 2015, San Jose,
CA, USA, May 17-21, 2015 (2015), pp. 709–724.

[26] Pewny, J., Schuster, F., Bernhard, L., Holz, T., and Rossow,
C. Leveraging semantic signatures for bug search in bi-
nary programsIn Proceedings of the 30th Annual Computer
Security Applications Conference (2014), ACSAC ’14, ACM,
pp. 406–415.

[27] Ramos, D. A., and Engler, D. R. Practical, low-effort equiva-
lence verification of real codeIn Proceedings of the 23rd Inter-
national Conference on Computer Aided Verification (2011),
CAV’11, Springer-Verlag, pp. 669–685.

[28] Rosenblum, N., Miller, B. P., and Zhu, X. Recovering
the toolchain provenance of binary codeIn Proceedings of
the 2011 International Symposium on Software Testing and
Analysis (2011), ISSTA ’11, ACM, pp. 100–110.

[29] Sæbjørnsen, A., Willcock, J., Panas, T., Quinlan, D. J., and

Su, Z. Detecting code clones in binary executables. In
Proceedings of the Eighteenth International Symposium on
Software Testing and Analysis, ISSTA 2009, Chicago, IL, USA,
July 19-23, 2009 (2009), pp. 117–128.

[30] Sharma, R., Schkufza, E., Churchill, B., and Aiken, A. Data-
driven equivalence checkingIn Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Pro-
gramming Systems Languages & Applications (2013),
OOPSLA ’13, ACM, pp. 391–406.

[31] Smith, R., and Horwitz, S. Detecting and measuring similar-
ity in code clones. In Proceedings of the International Work-
shop on Software Clones (IWSC) (2009).

[32] Swamidass, S. J., Azencott, C., Daily, K., and Baldi, P. A
CROC stronger than ROC: measuring, visualizing and opti-
mizing early retrieval. Bioinformatics 26, 10 (2010), 1348–
1356.

[33] Weiser, M. Program slicing. In Proceedings of the 5th In-
ternational Conference on Software Engineering, San Diego,
California, USA, March 9-12, 1981. (1981), pp. 439–449.

http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf

	Introduction
	Overview
	Strand-Based Similarity by Composition
	Similarity By Composition
	Procedure Decomposition to Strands
	Statistical Evidence
	Strand Similarity as a Probability Measure
	The Statistical Significance of a Strand

	Local and Global Evidence Scores

	Semantic Strand Similarity
	Similarity Semantics
	Encoding Similarity as a Program Verifier Query

	Evaluation
	Test-Bed Creation and Prototype Implementation
	Lifting Assembly Code into BoogieIVL

	Using Vulnerable Code as Queries
	Testing Different Aspects of the Problem Separately
	Evaluating Our Method
	Enabling the Use of Powerful Semantic Tools

	Results
	Finding Heartbleed
	Decomposing Our Method into Sub-methods
	Comparison of TRACY and Esh
	Evaluating BinDiff
	Pairwise Comparison
	Limitations

	Related Work
	Conclusions

