
Similarity of Binaries through re-Optimization

Yaniv David
Technion, Israel

yanivd@cs.technion.ac.il

Nimrod Partush
Technion, Israel

nimi@cs.technion.ac.il

Eran Yahav
Technion, Israel

yahave@cs.technion.ac.il

Abstract
We present a scalable approach for establishing similarity
between stripped binaries (with no debug information). The
main challenge in binary similarity, is to establish similarity
even when the code has been compiled using different com-
pilers, with different optimization levels, or targeting differ-
ent architectures. Overcoming this challenge, while avoiding
false positives, is invaluable to the process of reverse engi-
neering and the process of locating vulnerable code.

We present a technique that is scalable and precise, as
it alleviates the need for heavyweight semantic comparison
by performing out-of-context re-optimization of procedure
fragments. It works by decomposing binary procedures to
comparable fragments and transforming them to a canoni-
cal, normalized form using the compiler optimizer, which
enables finding equivalent fragments through simple syntac-
tic comparison. We use a statistical framework built by an-
alyzing samples collected “in the wild” to generate a global
context that quantifies the significance of each pair of frag-
ments, and uses it to lift pairwise fragment equivalence to
whole procedure similarity.

We have implemented our technique in a tool called GitZ
and performed an extensive evaluation. We show that GitZ is
able to perform millions of comparisons efficiently, and find
similarity with high accuracy.

CCS Concepts •Theory of computation → Program
analysis; •Hardware→ Emerging languages and compil-
ers; •Software and its engineering→ Source code gener-
ation

Keywords static binary analysis; statistical similarity; bi-
nary code search

1. Introduction
A known challenge facing a security researcher when reverse
engineering a stripped binary library or executable is iden-
tifying procedures from known libraries within the binary.
Countless hours are wasted analyzing code that originates
from pre-analyzed or standard libraries. This is due to the
fact that the source code gets ported, modified and compiled
using various combinations of compilers and optimization
flags, and targeting different (CPU) architectures. Any slight
change in the compilation process leads to vast differences

in the assembly code, rendering the researcher powerless to
use any pre-existing knowledge.

The situation is exacerbated when one is trying to locate
code vulnerable to a newly discovered 0-day attack. This
vulnerable code may have been embedded in countless bina-
ries, being executed on various devices in the organization,
and time is of the essence. One notable example is the re-
cently found Shellshock [5] vulnerability, which was undis-
covered for 20 years and got ported into various versions of
Unix operating systems, including Apple’s OSX and Ubuntu.
This vulnerability even affects jail-broken ARM based iOS
devices. The discovery required security researchers in or-
ganizations to meticulously search for all devices that may
be running the vulnerable procedure, and examine those bi-
naries – an insurmountable task when binaries have been
stripped, which is the common case.
Problem definition Given a query procedure q and a large
corpus T of (target) procedures, we aim to produce a quanti-
tative measure which defines the similarity of q and each of
the procedures t ∈ T in an overall ranking. Our goal is to give
high ranking to procedures in T that originate from the same
source code as q, but have been compiled with (any com-
bination of) a different compiler, different optimization flags
or a different target architecture. To adhere to real-world sce-
narios, the result must be produced over stripped binaries
with no debug information, and produce a low false-positive
rate while maintaining scalability.
Existing techniques To the best of our knowledge, all pre-
vious work in binary code search [11, 7, 23, 13, 27, 10, 15]
suffers from one or more of the following drawbacks: (i) it
does not address the stripped, cross-compiler, cross- opti-
mization and cross-architecture scenario; (ii) it suffers from
a high false positive rate (iii) is does not scale to millions
of comparisons; or (iv) it requires dynamic analysis in ad-
dition to static analysis. In Sec. 5 we further elaborate on
these approaches, as well as address work in related fields,
including equivalence checking [29, 20, 26], semantic dif-
ferencing [25, 24], translation validation [31] and compiler
bug-finding [16].

1.1 Our Approach

We propose a new approach to finding similar procedures in
stripped binaries. Our search process is accurate and scal-

able, and works across different compiler vendors, optimiza-
tion levels and architectures. Our approach is based on the
following key steps:
Fragmenting procedures to comparable units We decom-
pose binary procedures into “strands” – data-flow slices of
basic blocks [10], and use them as the basic comparable unit
for whole procedure similarity.
Finding strand equality through re-optimization We pro-
pose a novel “out-of-context re-optimization” technique,
which captures procedure semantics through the optimiza-
tion of its strands. The way procedures are translated to ma-
chine code varies widely across different architectures, com-
pilers and optimization levels (Fig. 1(i)). To efficiently and
accurately overcome syntactic difference, we capture proce-
dure similarity through the (re-)application of the compiler
optimizer over its strands, bringing them to a canonical nor-
malized form (canonical with respect to the optimizer), thus
identifying syntactically different yet semantically equiva-
lent strands. This alleviates the need for heavyweight se-
mantic tools (e.g., a rewrite engine [11] or SMT solver [10])
and allows our approach to scale.
Gaining perspective with a global context To achieve high
precision with a very low false positive rate (which is key to
our vulnerability search setting), we identify and reduce the
significance of common strands – those strands which orig-
inate from style, language, compiler or architecture artifacts
(e.g. stack handling). We estimate each strand’s importance
using a global context – a statistical framework based on an
approximation of all binary procedures, built by crawling a
corpus containing millions of strands from hundreds of thou-
sands of procedures found “in the wild”.
Main contributions In this paper we make the following
contributions:

• We propose a new representation geared towards cross-
{compiler, optimization, architecture} binary code sim-
ilarity, based on decomposing binary procedures into
strands, canonicalizing and normalizing them. This out-
of-context re-optimization allows precise similarity match-
ing at scale. Our decomposition is lifter-agnostic, i.e.,
can be applied to many intermediate representations of
assembly (Section 3.1).
• We demonstrate how our representation integrates into

building a blazing-fast similarity computation engine,
based on hashed strands and employing a statistical
framework from a limited sample of binaries, to improve
accuracy (Section 3.2).
• We implemented a prototype of our approach in a tool

called GitZ, which demonstrates our translation and re-
optimization process on x86_64 and AArch64 binaries.
GitZ translates binaries from various architectures us-
ing the VEX-IR representation and features a newly im-
plemented translation engine from VEX-IR to LLVM-IR,

which allows for re-optimization using the LLVM opti-
mizer. Our approach enabled GitZ to harness powerful
many-core setups to compute procedure similarity accu-
rately, at scale (Section 3.2 and Section 4.3).
• We show an extensive evaluation of GitZ in its differ-

ent use cases using a diverse and challenging dataset of
hundreds of thousands. We examine cross-{compiler, op-
timization, architecture} search scenarios independently
and together to evaluate the challenge presented by each
vector of the problem. We also examine the effect and
contribution of the components of our approach. We
compare the results to state-of-the-art techniques and
show that we produce more accurate results, with an
order-of-magnitude speedup (Section 4).

2. Overview
In this section we informally describe our approach using an
example found during our evaluation.

2.1 The Challenge in Establishing Binary Similarity

Fig. 1 shows our similarity method at work when applied to
two similar computations, taken from the dtls1_buffer_message
procedure in d1_both.c, which is a part of the OpenSSL
code package. These computations were created by compil-
ing the said procedure in two different setups, using:

• gcc version 4.8, targeting the AArch64 (64-bit ARM) ar-
chitecture, and optimizing at -O0 optimization level. The
processing of this computation is presented in the upper
half of Fig. 1, and marked (A).
• icc version 15.0.3, targeting the x86_64 Intel architec-

ture, and optimizing at -O3 optimization level. The pro-
cessing of this computation is presented in the lower half
of Fig. 1 and marked (B).

Fig. 1 is divided into four columns. The first column (left-
hand side), marked (i), shows snippets from the binaries
created by the compilation setups above, and the other three
(ii, iii and iv) show the effects of our method’s processing
steps on them.
Syntactically different yet semantically equivalent code

The assembly snippets in Fig. 1(i) perform exactly the
same computation, yet understanding this requires some fa-
miliarity with both architectures. The computations use two
values that were generated beforehand and stored in two reg-
isters, with an additional, temporary register: the constant 1
is added to the value stored in one of the registers, and the
result is stored in the temporary register. The sum is then
subtracted from the third register’s value. Finally, the com-
putation sets a boolean flag value according to the result of
comparing the subtraction’s result with −2.

The two computations are performed in different ways,
making them hard to compare syntactically. This distinction
stems from the different compilation processes, which intro-

t18 = load i64, i64* rax
t19 = add i64 t18, 1
store i64 t19, i64* r15
t23 = load i64, i64* r13
t24 = load i64, i64* r15
t25 = sub i64 t23, t24
store i64 t25, i64* r13
t37 = load i64, i64* r13
t38 = sub i64 t37, -2

...

lea r15, [rax+1]
sub r13, r15
cmp r13, -2

X86-64
icc 15.0.3 –O3

t18 = load i64, i64* rax
t19 = add i64 t18, 1
store i64 t19, i64* r15
t23 = load i64, i64* r13
t25 = sub i64 t23, t19
store i64 t25, i64* r13
t38 = add i64 t25, 2
ret i64 t38

mov x0, x20
add x0, x0, 1
sub x21, x21, x0
cmn x21, 2

ARM-64
GCC 4.8 –O0

t3 = load i64, i64* x20
t18 = add i64 t3, 1
store i64 t18, i64* x0
t38 = load i64, i64* x21
t42 = sub i64 t38, t18
store i64 t42, i64* x21
t57 = add i64 t42, 2
ret i64 t57

t0 = load i64, i64* r0
t1 = add i64 t0, 1
store i64 t1, i64* r1
t2 = load i64, i64* r2
t3 = sub i64 t2, t1
store i64 t3, i64* r2
t4 = add i64 t3, 2
ret i64 t4

(B)

t3 = load i64, i64* x20
t4 = sext i8 0 to i64
t5 = shl i64 t3, t4
t6 = or i64 0, t5
store i64 t6, i64* x0
t17 = load i64, i64* x0
t18 = add i64 t17, 1
store i64 t18, i64* x0
t38 = load i64, i64* x21

...

(A)

(i) Assembly (ii) Lifted (iii) Canonical (iv) Canonical
& Normalized

Figure 1. Applying canonicalization, normalization on strands taken from our motivating example (OpenSSL‘s
dtls1_buffer_message procedure in d1_both.c). Only the application of both techniques results in equivalence.

duce variance due to many factors, including but not limited
to:
Arbitrary register use: The inputs for the computation are
stored in three different sets of registers: x0, x20 and x21 in
(A) and rax, r15 and r13 in (B). The register selection pro-
cess of the compiler is driven by various heuristics and in-
tricate code pass specifics, which results in a fairly arbitrary
selection. Under certain scenarios, even well-known conven-
tions like using rbp for the stack frame head are not adhered
to by the compiler.
Cross-optimization variance: Another source for syntactic
difference in Fig. 1 is the variance in the way code is pro-
duced for different optimization purposes. The -O0 code gen-
erated by gcc in (A) contains a move and an addition op-
eration, which could have been easily been united to one
instruction–ADD x1,x20,#1. On the other hand, the CLang
generated code (B) demonstrates the use of the lea instruc-
tion to perform a binary arithmetic operation and put its
result in a third register without causing other side-effects
(as Intel instruction set architecture (ISA) does not support
three-address-code instructions like ARM).
Different instruction selection: The snippets from Fig. 1
check whether the input values are equal using different
instructions: cmn in (A) and cmp in (B). cmn has similar se-
mantics to the better known cmp instruction, yet the former
uses addition instead of subtraction to check for equality.
This change causes the comparison to be performed against
the constant 2 instead of −2.

These variations, found in a short simple computation,
demonstrate the challenge in establishing similarity in bi-
nary code. Many more variations can be introduced by the
application of different optimization levels, using different
compilers, or by targeting different machine architecture. In
this work, we propose a new approach for overcoming these
variations, while finding a new sweet spot between scalabil-
ity and accuracy.

2.2 Representing Procedures in a Decomposed, Canon-
icalized & Normalized Form

Lifting binaries to intermediate representation We adapt
and use existing techniques for lifting binary procedures
into LLVM-IR. This standard representation is beneficial in
that: (1) basing our similarity method on LLVM-IR allows
it to be architecture-agnostic, and (2) the LLVM-IR format
and accompanying tool-suite is well documented, well main-
tained and has a plethora of tools for creation, translation
and manipulation. Since there are no tools which offer sup-
port for translating binary code from multiple architectures
to LLVM-IR, we implemented a translator for the VEX-IR [22]
to LLVM-IR. VEX-IR is a well-used and robust intermediate
representation (IR) for representing binary code from many
architectures.

Fig. 1(ii) shows the result of lifting the assembly snippets
in Fig. 1(i) into LLVM-IR.
Decomposing procedures to strands We build upon pre-
vious work [10], and use a similar decomposition, where
the procedure’s basic blocks are further decomposed into
strands – data-flow dependency chains within the scope of
a basic block.

Fig. 2 depicts (top part) a basic block taken from an icc
compilation of our motivating example, and (bottom part)
the two strands extracted from it. A strand is the series of
operations leading to the computation of a value within the
scope of the basic block. Strand 1 holds the instructions
needed to compute the values of rbx (and only them) and
Strand 2 holds the instructions for computing the compar-
ison result in cmp r13, -2. Note that instruction 2 partici-
pated in both computations and thus appears in both strands.
The pseudo-code for the extraction process is further shown
in Algorithm 1. Strand 2 is used as the starting point of the
canonicalization and normalization depicted in Fig. 1(B).

1 mov rbx, 0x147
2 lea r15, [rax+1]
3 add rbx, r15
4 sub r13, r15
5 cmp r13, -2

Basic Block

1 mov rbx, 0x147
2 lea r15, [rax+1]
3 add rbx, r15

2 lea r15, [rax+1]
4 sub r13, r15
5 cmp r13, -2

Strand 1 Strand 2

Figure 2. Basic block (top) and extracted strands (bottom)
for motivating example (OpenSSL‘s dtls1_buffer_message
procedure) compiled to x86_64 Intel architecture assembly,
by icc version 15.0.3, optimizing at -O3 optimization level.

Examining the lifter outputs in this example, even for
short snippets, exposes additional challenges introduced by
the lifting process, when attempting to establish similarity:
(1) In (A), a very complex set of instructions are produced
to express the register move operation (mov x0,x20), which
include the or and shift operations. (2) In both examples
redundant load operations are performed, loading t39 in (A)
and t24 in (B) instead of using t17 and t19 respectively.

Also note that the modeling of cmn uses an add instruc-
tion, while the cmp is modeled using sub (as they should be).
Canonicalizing strands Fig. 1(iii) shows the benefits of
canonicalizing the strands: (1) All of the lifter-imposed
changes (the complex move operation modeling and redun-
dant loads) are reverted, (2) the expression is canonicalized
to perform the addition with the constant first and the re-
sult is put in the register before the subtraction, and (3) the
comparison is canonicalized to the simple addition with a
positive constant (instead of subtracting with a negative).

Note that this canonicalization step also acts as a re-
optimization for code which might not have been optimized
before. In our case the mov,add -> add optimization was
performed. It is also worth nothing that the Intel assembly
code was changed to use an instruction which the original
architecture does not offer (cmn).

Canonicalization is an important step in finding the equiv-
alence of the snippets from Fig. 1, yet further differences in
register selection cause the optimized strands not to match.
Normalized form Fig. 1(iv) shows the last step of our pro-
cess, and the benefits of the normalization step: the specific
name of the register become immaterial, and the temporary
values are renumbered to offset the fact the they were ini-
tially part of a bigger basic block and that some of the tem-
porary values were removed as they were a part of a redun-
dant operation.

In this final form the two strands are syntactically equiva-
lent. Transforming strands to a representation where seman-
tic equivalence is captured by syntactic equality instead of
using heavyweight theorem provers or dynamic analysis is
crucial to allowing our approach to scale.

Scalable search using hashed canonical strands Canoni-
calization and normalization of procedure strands are per-
formed on each procedure independently, followed by hash-
ing of the textual representation of the strands. The set of
strand hashes (i.e., a set of numbers), denoted R(p), is then
used to represent the procedure, p, in the comparison stage.
Comparing strand hashes allows our comparison engine to
achieve superior performance, and minimize memory usage.
Determining the statistical significance of a strand Another
important component of our approach is the use of a statis-
tical framework that determines the relevance of each strand
in establishing similarity. The goal is to distinguish relevant
strands attributed to procedure semantics as it appears in the
source code, from other strands which are artifacts of target-
ing a specific architecture or using a specific compiler pass.
The statistical reasoning has a twofold effect, as it also off-
sets some overmatching which may occur due to canonical-
ization and normalization.

The similarity score of two procedures, q and t, is based
on strands which appear in both q and t, i.e., R(q)∪R(t). The
statistical framework factors in the common appearance rate
of each strand, denoted by Pr(s), into the similarity score, in
an inverse manner. The significance of a strand and its subse-
quent contribution to the similarity score is the inverse of its
probability, s.t. rare strands (Pr(s)=0) contribute greatly to
similarity where common strands (Pr(s)=1) contribute very
little.

We determine the significance of a strand s using its
common appearance rate, in the (theoretical) set of all binary
procedures (in existence) W̃ as follows:

PrW̃ (s) =
|{p ∈ W̃ |s ∈ R(p)}|

|W̃ |
(1)

Estimating a global context through crawling binaries “in
the wild” As computing W̃ is intractable, our statistical
framework is based on sampling a limited number of bina-
ries “in the wild”, thus creating an estimation of the global
context, which we demote by P. We use P to approximate
the global context W̃. P can be gathered offline (regardless
of the query and target procedures being compared), and
we show that a relatively small number of procedures (1K)
is sufficient for achieving high accuracy in our approach.
Given P, we compute the similarity of a query q and a target
t, denoted S (q, t) as follows:

S P(q, t) =
∑

s∈(R(q)∪R(t))

|P|
f (s)

(2)

The similarity score between q and t is the sum of the
inverse frequency (f (s)) of all the strands shared between q
and t, normalized by the number of unique strands in P. The
composition of Eq. 2 is further explained in Sec. 3.2 by Eq. 3
and 4.

3. Algorithm

3.1 Representing Binary Procedures with Canonical-
ized Normalized Strands

Lifting opaque binary procedures to IR The first step used
by most tools dealing with binary executables is to lift the
procedures into some IR. This move allows the tool builder
to focus on the semantics expressed in the binary instruc-
tions and not on the way they were emitted by the compiler
or arranged by the linker. Prominent frameworks for per-
forming these steps are Mcsema [4], Binary Analysis Platform
(BAP) [9], and Valgrind [22]. The first uses LLVM-IR, while
the other two each created an IR (BIL for BAP and VEX-IR
for Valgrind) for their own purpose. It should be stated that
none of these frameworks (nor any other frameworks we en-
countered) attempt to perform decompilation of the binary
code, but rather fully represent the binary instructions’ se-
mantics. This is done by representing the machine state us-
ing variables, and translating the machine instructions to op-
erations on these variables, according to the machine speci-
fication.

This lifting process works by translating each assembly
instruction in the procedure into the IR, which explicitly
specifies how it affects the machine’s memory and registers,
including the flags.
Lifted IR inadvertently inhibit similarity

Implementing the lifting process requires an immense
amount of work, as there are many machine instructions,
some of which cause intricate side-effects and are dependent
on other elements of the machine state. To assuage some
of these difficulties, the lifting process does not concern
itself with being minimal or optimal in any way, and instead
focuses on capturing the precise semantics.

Fig. 3 shows three simple examples demonstrating this
behavior. In Fig. 3(a) we see a simple move instruction in 64-
bit ARM, and Fig. 3(b) shows the lifted VEX-IR for it. The
figure illustrates how a fairly trivial instruction is modeled
using several (relatively complex) arithmetic operations, and
using three redundant temporary values (t14,t15 and t16).
In Fig. 3(c) we see a simple add instruction in 64-bit x86 as-
sembly, and Fig. 3(d) shows the lifted BIL code for it. This
lift operation does not use the fact that one of the arguments
is a constant, and creates a redundant temporary value (T2)
for it. This value is then used in subsequent addition opera-
tion, even though the BIL allows for an addition between a
temporary and a constant. Fig. 3(e) displays another simple
instruction in 64-bit x86 assembly, this time a 32 bit subtrac-
tion, and Fig. 3(f) shows the lifted LLVM-IR code created by
Mcsema. The created IR again tries to model a more complex
computation, this time an unsigned subtraction with over-
flow, which returns a struct containing the subtraction’s
result and the overflow indication. This is performed even
though the next assembly commands do not check the over-

flow flag; accordingly, the lifted LLVM-IR will not extract the
second part of this struct.

For some use cases, the variance and redundancy of the
produced IR are immaterial. However, in the context of pro-
gram similarity, as shown in Fig. 1(ii), they are damaging,
and become disastrous when combined with the other chal-
lenges of finding similarity between different architectures
and optimization levels.
From lifted binaries to LLVM-IR strands The aforementioned
lifting tools were created with different design goals in mind:
Mcsema focused on lifting in a way that allows transfor-
mations on the intermediate code such as obfuscation and
adding security mechanisms. BAP is geared towards per-
forming binary analysis, and VEX-IRwas built for instrumen-
tation in Valgrind dynamic analyses. Furthermore, each tool
became specialized at handling specific combinations of the
target Operating System (OS) and architectures specifically:
Mcsemaworks well on Windows binaries, BAP contains a very
accurate representation of the x86 flag computation and VEX
is adept at generalizing multiple architectures.

We used VEX-IR in our prototype, by virtue of its abil-
ity to lift binaries from both Intel and ARM architectures
and support float instructions. Regardless of this prototype
implementation choice, we wanted our method to be lifter-
agnostic, and so we based our representation on LLVM-IR,
and implemented a translator from VEX to LLVM-IR. We se-
lected LLVM-IR, in view of its stability, extensive set of aux-
iliary tools and its support for multiple platforms.

Following the lifting and translation process to LLVM-IR,
our main goal is establishing a procedure representation
what will help us find similar procedures.

We start this process by adapting the strand creation pro-
cess described and used in [10]. This process begins by cre-
ating a control flow graph (CFG), and then slicing [34] the
basic blocks (the nodes of the CFG). A strand is the list of all
of the instructions from the basic block that affect the com-
putation of a specific value. The creation process results in a
list of strands covering the basic block’s instructions, and in
turn the entire procedure.

Note that unlike [10], our method do not require the use
of (costly) SMT solvers allowing us to use an LLVM-IR rep-
resentation without the need to translate to BoogieIVL [21].

Algorithm 1 shows the pseudo-code for the strand extrac-
tion process. The Ref,Def functions return the set of vari-
ables referenced or defined by an instruction. The algorithm
iterates over the block instructions, gathering strands accord-
ing to def-use chains, until all instructions are covered. Note
that each created slice is actually a static slice of basic-block,
where the sliced variable is not further used in the block.
Canonicalizing LLVM-IR strands Our notion of procedure
similarity depends on our method’s ability to detect sim-
ilar strands across different procedures. This requires our
method to overcome three major difficulties: (i) the compiler-
imposed changes to the way the strand’s semantics are rep-

mov x1, x21

(a) ARM-AArch64

add rax, 1

(c) Intel-x86_64

sub eax, 2

(e) Intel-x86_64

Valgrind Lifting BAP Lifting Mcsema Lifting
↓ ↓ ↓

t14 = GET:I64(x21)
t15 = Shl64(t14 ,0x00)
t16 = Or64(t13,t15)
PUT(x1) = t16

T1:u64 = R_RAX:u64
T2:u64 = 1:u64
R_RAX:u64 = R_RAX:u64+T2:u64

%usub = tail call { i32, i1 } \
@llvm.usub.w.OF(i32 %61, i32 2)

%62 = extractvalue { i32, i1 } \
%usub, 0

(b) VEX-IR (d) BIL (f) LLVM-IR

Figure 3. Three examples of binary to IR lifting outputs containing redundant operations

Algorithm 1: Basic Block to Strands
Input: bb - A basic-block as a list of instructions
Output: S - bb’s strands

1 uncovered← [0, 1, ..., |bb| − 1]; S← [];
2 while |uncovered| > 0 do
3 last← uncovered.pop_last ();
4 strand← [bb[last]];
5 used← Ref(bb[last]);
6 for i← (last − 1)..0 do
7 needed← Def(bb[i]) ∩ used;
8 if needed , ∅ then
9 strand.append (bb[i]);

10 used ∪= Ref (bb[i]);
11 uncovered.remove (i);

12 S.append (strand);

resented, e.g. optimizations for size or runtime and control
flow manipulation, (ii) the machine-imposed constraints,
e.g. the number of general-purpose registers available, as
well as the expressiveness of the instructions-set and (iii)
lifter-related changes similar to those detailed earlier in this
section.

The basis for establishing similarity using strands is find-
ing semantically equivalent strands, where this equivalence
accommodates for register renaming and other compiler
or architecture artifacts; e.g., r12 + (rax * rbx) will be
equivalent to x2 + (x4 * x7).

One way to find semantically equivalent strands while
avoiding performance-heavy solvers is to move to a canoni-
cal form. This transformation should funnel all semantically-
equivalent strands to the same syntactic representation.

Fortunately, the problem of canonicalizing expressions is
well researched and implemented in modern compilers to al-
low common-subexpression elimination and other optimiza-
tions at different levels (procedure-wide or at the basic block
level) as part of compilation-time optimizations.

As we are using LLVM-IR to represent our strands, an obvi-
ous choice for a canonicalizer is the CLang optimizer (opt).
Internally we represent each strand as an LLVM procedure,
which accepts as input all the registers partaking in the com-
putation. To allow us to harness the optimizer to our goal, we
perform two simple transformations to the LLVM procedure:
(i) change the machine register’s representation to global
variables and (ii) add an instruction returning the strand’s
value. Note that these changes are required only because the
strand was extracted from its context in the binary procedure.

The important optimizer phases we employ are ‘com-
mon subexpressions elimination’ and ‘combine redundant
instructions’ (activated by -early-cse and -instcombine
respectively). The passes perform canonicalization of the
expression under specific pre-defined rules. These include
re-associating binary operations, grouping subsequent ad-
ditions, converting multiplications with power-of-two con-
stants to shifts, and many more.

One example of this process is shown in the move from
(ii) to (iii) in Fig. 1.

For more information on these optimization phases, we
refer the reader to the LLVM documentation [3] with a friendly
warning that a full understanding of this process is possible
only by closely examining opt’s source code.
Out-of-context re-optimization is crucial to establishing
similarity Refining the representation of our strands by mov-
ing to a canonical form is an important step in our similarity
search method. Its important to note that optimizing entire
procedures or basic blocks has little effect in most scenarios
because multiple computation paths might be intertwined.
This is a major challenge in establishing binary similarity
(as demonstrated in Fig. 1). Re-optimizing the code allows us
to find similarity between unoptimized (e.g., -O0) assembly
code generated for one architecture, with heavily optimized
code for a completely different machine architecture. Fur-
thermore, the fact that we are targeting the code to the same
‘virtual’ machine (the LLVM abstraction) helps close the gap
between the different architectures for comparison purposes.

Moving to a normalized strand representation During the
canonicalization step performed by the compiler, the strand
(in our case a procedure with a single basic block) is repre-
sented by a directed acyclic graph (DAG) which stores the
expression. Even though comparing DAGs is possible, we
wanted to simplify our representation to some kind of tex-
tual form, allowing for fast and simple comparison. This is
accomplished by using opt to output a linearized version
of the computation’s DAG. To finalize the transformation
which eliminates the origin and compilation choices made
in the creation of the binary code, the final refinement to our
representation is normalizing the strands. This is done by re-
naming all symbols in the strand, i.e., its registers and tem-
porary values, into sequentially named symbols. This step
is crucial for cross-architecture comparison, as the names
of the specific registers used in a given computation have
nothing to do with its actual semantics, and are completely
different between architectures.

3.2 Scalable Binary Similarity Search

Using hashed strands to detect similarity The steps per-
formed to canonicalize and normalize the strands allow for
efficient comparison, as they replace complex and heavy se-
mantic matching with syntactic equality to establish proce-
dure similarity. Another important advantage for this transi-
tion is that we index the procedure as the set of MD5 hashes
and efficiently compare them in this representation. This al-
lows for fast comparison and a reduced memory footprint.
Thus, given a procedure p, we denote its representation,
R(p), as the set of MD5 hash values over the canonicalized
and normalized strands of the procedure:

R(p) = {MD5(Canonicalize&Normalize(sp)))|sp ∈ p}.
A basic notion of the similarity between a given query

and target, q and t, can be achieved based on the inter-
section of their (hashed) representation denoted M(q, t) =

R(q)∩R(t), yet this similarity metric doesn’t perform well in
practice, as shown in Sec. 4.5. One reason is that some of the
matched strands are not relevant, as they are compilation ar-
tifacts and have nothing to do with the semantics expressed
by q (or t).
Accounting for the binary creation process As our evalua-
tion will show, using a certain compiler or targeting a spe-
cific architecture in the procedure compilation and assem-
bly generation process adds non-semantic related artifacts in
the generated assembly, beyond the original content of the
source code. These artifacts might be a side effect of access-
ing the machine’s memory through a certain construct (e.g.,
a stack), or be related to a specific optimization pattern im-
plemented by the compiler. Previous work, [30] for example,
shows that these artifacts can even be used to detect the tool-
chain used to create the binary.

Knowing the exact origins of every query and target pro-
cedure in the corpus might have allowed us to cancel out
these artifacts, but retrieving this information is complex and

imprecise when working on stripped executables. We thus
need to find some other way to separate the semantic strands,
which originate from the source code of the query, from the
unrelated artifact strands, which can be attributed to the bi-
nary creation process.

One relatively simple way to separate the strands is to ap-
ply the assumption that a common strand, which appears in
many procedures, carries less importance than a rare strand.
In general we can define Pr(s) as the probability that a strand
s will appear “at random”. A more appropriate approach is to
limit our probability space by two factors: (i) strands that are
lifted from real binaries, and specifically from the group of
binaries which are targeting one of the architectures our pro-
cess can lift, denoted W and W̃ respectively, and (ii) strands
that are canonicalized and normalized.

As defined in (1), we determine PrW̃ (s) for a given strand
s and we divide the number of different procedures in which
it appears, by the total number of unique strands appearing
in all of the procedures in W̃.

We use this probability to define our similarity metric:

S W̃ (q, t) =
∑

s∈M(q,t)

1
PrW̃ (s)

=
∑

s∈M(q,t)

|W̃ |

|{p ∈ W̃ |s ∈ R(p)}|
(3)

Using random sampling to approximate strand frequency
Calculating PrW̃ is not feasible, due to its dependence on
possessing W̃ (although W̃ is finite at any given time, it
constantly grows). Instead we sample a large subset, denoted
P, and use it to approximate PrW̃ :

PrW̃ (s) 'P
f (s)
|P|

(4)

where:

f (s) =

|{p ∈ P|s ∈ R(p)}| s ∈ P
1 else

P is randomly collected from W̃ using a crawling pro-
cess that gathers binary procedures “in the wild”, and as such
contain equal representation of all supported compilers, op-
timization levels and architectures. Moreover, smaller sizes
for P will decrease the memory footprint of our method. We
further discuss the composition and size of P in Sec. 4.6.
Note that all the calculations regarding the frequency of ev-
ery strand s ∈ P and the (constant) |P| can be done offline,
and using this data will allow our similarity score calculation
to be performed in a global context yet still scale. Applying
Eq. 4 to Eq. 3 will result in Eq. 2, shown before.

We note that PrW̃ is an approximation of PrW̃ , which is a
probability. Since it is not feasible to compute W̃, we approx-
imate f (s) = 1 for strands not collected in P. This prevents
f (s)/|P| from being a probability; however it remains a rea-

sonable approximation as these are mostly rare strands that
seldom appear in W̃.

Some important properties of our similarity score are:(i) It
is symmetric, allowing to cache similarity scores for any pair
for future matchings. (ii) The results of similarity searches
with the same query, which outputs two ranked lists, can be
joined.
Embarrassingly parallelizable approach Our technique is
based on pairwise strand hash comparison operations and
the application of the (offline) global context to produce a
similarity score. Thus we were able to deploy our tool on
a powerful many-core setup, where each query-target pair
comparison is assigned to a core. The global context is pre-
computed and loaded by each of the cores interdependently.
A pair’s similarity score is thus produced by a single core
in under a second, on average, independently of other com-
parisons. The procedure indexing process is parallelizable
as well, where each procedure is indexed by a different core.
We performed all of our experiments on a machine with four
Intel Xeon E5-2640 (2.90GHz) processors (72 cores), 368
GiB of RAM, running Ubuntu 14.04.2 LTS. Each process
uses at most 300MiB during its run. In the machine’s view,
when all 72 cores are used, the engine uses 23 GiB.

4. Evaluation
In this section we evaluate GitZ. Our evaluation aims to
answer the following questions:
• How useful is GitZ in the vulnerability search scenario

(Sec. 4.3)?
• How well does GitZ scale (Sec. 4.3)?
• How accurate is GitZ and how does it measure (indepen-

dently and altogether) in each of the problem vectors:
different architectures, different compilers and different
optimization levels (Sec. 4.1)?
• How does each component of our solution affect the

accuracy of GitZ (Sec. 4.5)?
• How does GitZ measure in comparison to previous work

(Sec. 4.3)?
But first we will explain our corpus creation process and

design goals, and present our evaluation metric.

4.1 Creating a Corpus to Evaluate the Different Prob-
lem Vectors

To perform a through evaluation, we will need to compare
binaries where the ground truth is known. To this end we
create binaries according to our three problem vectors:
Different architectures As illustrated by our motivating ex-
ample (Fig. 1), the same source code compiled to different
architectures is inherently different. The instruction set is
different, and even after lifting to an intermediate represen-
tation, the code remains different, due to different paradigms
implemented by the architecture. For instance, Intel’s x86_64
architecture allows instructions to operate over the higher 8
bit part of certain registers ([abcd]h), while ARM’s AArch64

does not allow accessing data at that resolution, and requires
further computation to extract the same value (see another
example in Fig. 5). To measure the accuracy of our tech-
nique in the cross-arch setting, our corpus included binaries
from two widely used architectures: Intel x86_64 and ARM
AArch64.
Different compilers Different compilers produce binaries
which differ immensely in syntax [12]. Different compil-
ers may use different registers, employ different instruction
selection, order instructions differently, structure the code
differently, etc. To evaluate our ability to overcome these
differences, our test corpus was compiled using prominent
compilers from 3 different vendors, with several versions for
each compiler.
Different optimization levels Modern compilers apply vari-
ous optimization methods. For instance, with the -O1 and -O2
optimization levels for the gcc compiler, as many as 40 dif-
ferent optimization passes are performed [2]. To see whether
GitZ is able to identify similarity across optimizations, each
binary was compiled using each of the optimization flags.
Compilation setups In our evaluation we will use:

• Cx64 – The set of compilers targeting the Intel x86_64
architecture containing CLang 3.{4,5}, gcc 4.{6,8,9} and
icc {14,15}.
• CARM – The set of compilers targeting the ARM AArch64

architecture containing aarch64-gcc 4.8 and aarch64-CLang
4.0.
• O – A set of optimization levels, -O{0,1,2,3,s}.

To this end we have created a utility named Compilator,
which receives a code package as input and compiles it
with each of the configurations from {Cx64 ∪CARM} × O, re-
sulting in 44 binary versions for each procedure. We used
Compilator to create ∼500K binary procedures from promi-
nent open-source software packages, including OpenSSL,
git, Coreutils, VideoLAN, bash, Wireshark, QEMU, wget
and ffmpeg. Some packages were intentionally chosen as
they contained a vulnerability (in a specific version), which
was used in the experiments in Tab. 1.

We crawled the corpus to randomly select 1K procedures,
and used their strands to build our global context P. Further
details regarding the global context composition and size can
be found in Section 4.6.

4.2 Evaluation Metric

In our approach, the similarity of a pair of procedures is
quantified as a real number value, within the global con-
text. This means that for every query procedure, we pro-
duce a ranking of similar target procedures, and thus re-
quire a way to evaluate this ranking. We use two metrics:
The CROC metric, which is widely used in assessment of
early retrieval methods [33] and measures whether there are
many false positives at the top of the ranking. We also in-

(a) (b)
Tool GitZ-500K: GitZ-1500: Esh-1500: # #Canon

\ Cross-{Comp, Arch, Opt} Cross-Comp Cross-Comp VEX Norm
CVE Alias #FPs CROC � #FPs CROC � #FPs CROC � Strands Strands

1 2014-0160 Heartbleed 52 .999 15m 0 1 1s 0 1 19h 89 45
2 2014-6271 Shellshock 0 1 17m 0 1 3s 3 .996 15h 233 71
3 2015-3456 Venom 0 1 16m 0 1 1s 0 1 16h 47 20
4 2014-9295 Clobberin’ Time 0 1 16m 0 1 2s 19 .956 16h 153 58
5 2014-7169 Shellshock #2 0 1 12m 0 1 2s 0 1 11h 359 104
6 2011-0444 WS-snmp 0 1 14m 0 1 1s 1 .997 10h 65 43
7 2014-4877 wget 0 1 10m 0 1 2s 0 1 15h 214 47
8 2015-6826 ffmpeg 0 1 17m 0 1 1s 0 1 20h 74 30
9 2014-8710 WS-statx 0 1 18m 0 1 2s - - - 104 55

Table 1. CROC and #FP for the vulnerability search experiments: (a) Over 500K procedures, cross-{arch, compiler, optimiza-
tion} and (b) A comparison of GitZ to [10].

clude the percentage of false positives encountered until all
true positives are covered, which is another reflection of
the CROC measure. However it is important to note that
CROC measures the rate of false positives encountered as
the threshold increases, and not just their number or per-
centage. The CROC measure is an adaptation of the Re-
ceiver Operating Characteristic (ROC) method for scenar-
ios with huge corpora. In general, the ROC method operates
by treating the ranked list as a classifier (i.e., setting a strict
threshold and treating all results above it as positive and all
below as negative) and measuring its accuracy as follows:
Acc(thresh) = (TP+TN)/(P + N) (where TP stands for true
positives, TN for true negatives, etc.). The accuracy is then
computed over all thresholds found in the ranking and the re-
sult is plotted. The area under the curve (AUC) for this graph
represents the ROC measure. CROC operates similarly but
assigns a higher penalty for false positives. This makes it
more appropriate for our scenarios, as a human expert will
often need to review the results, and thus a low number of
false positives is crucial. It is critical to note that CROC re-
flects the accuracy across all thresholds. In fact, there is no
clear way to set a strict global threshold for classifying a
score value as a positive match over all experiments, as sim-
ilarity scores vary according to query and corpus size. We
use Yard-Plot [6], which uses (by default) a magnification
factor of α = 7, which transforms a FPR of 0.1 to 0.5. Fur-
ther discussion of the benefits and implementation of this
widely used method is provided by Swamidass et al. [33].

4.3 GitZ as a Scalable Vulnerability Search Tool

To evaluate GitZ in the vulnerable code search scenario,
we used real-world vulnerabilities and searched for them in
our corpus of procedures. The experiment shows how GitZ
can be used by a security-savvy organization that wishes to
discover whether it might be vulnerable to a newly found
0-day exploit.

Tab. 1(a) details our main experiment, where 9 real-world
vulnerable procedures from open source projects are used as
queries and searched against our full 500K procedure cor-

pus. The corpus contained 44 true positives (i.e., similar
procedures originating from the same source code) for each
query. For each procedure the number of false positives, the
overall accuracy expressed using the CROC measure, and
the overall runtime (rounded) are specified. In all experi-
ments but one, GitZ was able to rank all true positives above
all unrelated procedures. For experiment #1 (Heartbleed),
52 false positives were ranked above a true positive (0.0001
FP rate).

Tab. 1(b) further shows a comparison of GitZ to the tool
Esh from [10]. We recreated the experiment from [10] (using
the publicly available dataset [1]), which includes search-
ing for the vulnerabilities in a corpus of 1500 procedures,
across compilers (Esh did not apply to the cross-architecture
or cross-optimization level scenarios). The results reported
in [10] are marked Esh-1500, and the results for running the
same experiment with GitZ appear alongside, marked GitZ-
1500. Tab. 1(b) shows that GitZ is able to produce more ac-
curate results with 0 false positives, for the same scenario.
Furthermore, since Esh relies on a program verifier, its aver-
age runtime is 15.3 hours. GitZ, on the other hand, provides
a speedup of 4 orders of magnitude, from tens of hours to
an average run time of 1.8 seconds. Finally, when added a
new vulnerability (CVE 2014-8710) which did not appear
in the Esh experiment, GitZ was able to find all true posi-
tives with 0 false positives. There is a slight loss in precision
for vulnerability #1 (Heartbleed) for the GitZ-500K exper-
iment (compared to GitZ-1500), which is attributed to the
more challenging cross-{arch, opt} scenario, and the vastly
larger corpus.

The last two columns in Tab. 1 show the number of
(unique) raw VEX strands and canonical normalized strands
extracted from each procedure. The numbers show the first
positive effect of our normalization and canonicalization
passes, as they help reduce the procedure representation.
These passes further affect accuracy, as explained in Sec-
tion 2.

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4. Similarity score (as height) for All v. All experi-
ment. Average CROC: .978, FP rate: .03, Runtime: 1.1h.

4.4 All vs. All Comparison

To better evaluate GitZ’s accuracy and performance over
these challenging scenarios, we performed an experiment
using a subset of 1K procedures, selected at random from
our 500K corpus. The experiment was executed in an “All
vs. All” setting, where every procedure out of the thousand
picked is searched against all others (approximately 1 mil-
lion comparisons). The experiment’s goal was to evaluate
our approach, when either the query or the target binaries
consist of any and all of the varying architectures, compilers
and optimization levels. In this setting, GitZ reports an aver-
age CROC accuracy of .978, with an average FP rate of .03.
The overall run time for the experiment was 1.1 hours.

Due to the size of the experiment, we cannot include a
table showing the result for each of the procedures. Instead,
we present results in the form of a surface (Fig. 4) showing
the normalized similarity for 100 randomly selected queries.

Fig. 4 shows the normalized similarity result as surface
height. Both axes have the same dataset: The list of exper-
iments ordered by name and grouped together according to
source procedure, i.e., all compilations of the same proce-
dures are coalesced. Important observations are:

(i) The diagonal shows the ground truth (all procedures
are matched with themselves) along with other compilations
of the same procedure. These can be see as “ridges” along
the diagonal “wall”. The similarity score for the same proce-
dures compiled differently is, as expected, lower than that of
the ground truth and is dependent (for the most part) on how
different the architecture, compilers and optimization flags
are.

(ii) The surface is symmetrical w.r.t the diagonal. This is
expected as our similarity metric is symmetrical i.e. S (q, t) =

S (t, q), due to the use of an offline global context.
(iii) Some “spikes” seem out of place. For instance the

invalidate_cache() procedure from dd.c seems to match
with an unrelated procedure and create a false positive. Upon
closer examination, we learn that the matched procedure is
iwrite() also from dd.c, where in fact invalidate_cache()

Scenario # Queries Targets CROC FPr
Cross-* 1 * * .977 .03
Cross- 2 CARM -O* Cx64 -O* .963 .01Arch,Opt 3 Cx64 -O* CARM -O*

4 gccx64 gccx64 .999 .0014.{6,8,9} -O* 4.{6,8,9} -O*
5 iccx64 iccx64 .999 .001

Cross-
{14,15} -O* {14,15} -O*

Opt,
6 CLangx64 CLangx64 1 0

Version
3.{4,5} -O* 3.{4,5} -O*

7 gccARM 4.8 -O* gccARM 4.8 -O* 1 0
8 CLangARM 4.0 -O* CLangARM 4.0 -O* 1 0

Cross-
9 Cx64 -Os Cx64 -Os .992 .001

Comp
10 Cx64 -O0 Cx64 -O0 .992 .001

x86_64

11 Cx64 -O1 Cx64 -O1 .986 .002
12 Cx64 -O2 Cx64 -O2 .992 .001
13 Cx64 -O3 Cx64 -O3 .992 .001

Cross-
14 CARM -Os CARM -Os .988 .002

Comp
15 CARM -O0 CARM -O0 .995 .001

AArch64

16 CARM -O1 CARM -O1 .999 .001
17 CARM -O2 CARM -O2 .995 .001
18 CARM -O3 CARM -O3 .998 .001

Cross-

19 Cx64 -Os CARM -Os .969 .006

Arch

20 CARM -Os Cx64 -Os

21 Cx64 -O0 CARM -O0 .977 .00422 CARM -O0 Cx64 -O0

23 Cx64 -O1 CARM -O1 .960 .00624 CARM -O1 Cx64 -O1

25 Cx64 -O2 CARM -O2 .965 .00526 CARM -O2 Cx64 -O2

27 Cx64 -O3 CARM -O3 .975 .00428 CARM -O3 Cx64 -O3

Table 2. Accuracy and FP rate for different derivatives of
the All v. All experiment.

is a callee. The matching occurs because in that specific
compilation, if iwrite(), the callee invalidate_cache()
was inlined, and the entire procedure body resides inside the
binary, thus explaining the match and asserting it as a true
positive.
Evaluating all vectors, together and separately Tab. 2
shows the accuracy of GitZ for several combinations of
compilers, optimization levels and architectures for the
aforementioned All v. All experiment. These experiments
are aimed at answering questions like: (i) “How well does
our technique find similarity between less and more opti-
mized code, produced by the same compiler?” (ii) “Which
of the search settings (opt, comp, arch) is most challeng-
ing?” (iii) “Does optimization level factor when searching
across compilers, architectures?”

Tab. 2 presents the results from 28 different settings of the
experiment where: (i) the “Scenario” column groups similar
experiments, (ii) the “Queries” and “Targets” columns spec-
ify the subset of compiler setups used to generate the queries
and targets’ and (iii) the CROC and FPr specify accuracy and
false positive rate.
Similarity within compiler, architecture boundaries: Lines
4-8 of Tab. 2 show that GitZ is adept at finding similarity
whenever the code is compiled with the same compiler, but
different optimization level, regardless of compiler vendor,

or even target architecture. Lines 9-18 show a slight loss
of precision, for the cross-compiler (but same architecture
and optimization level) scenario. No particular optimization
level showed to be more challenging than the others.
Challenging cross-architecture scenarios: Lines 2-3 and 19-
28 in Tab. 2 describe the cross-architecture scenario, where
the compiled queries targeting the AArch64 architecture are
searched for in a corpus of x86_64 targets, and vice versa.
Each experiment is represented using two lines in the table
to emphasize the distinction made between architectures, i.e.
when searching for an AArch64 query, the target corpus in-
cluded only x86_64 and vice versa. The cross-architecture
scenario presents the greatest challenge for GitZ. This chal-
lenge stems from different implementation paradigms for
various operations and instructions, which result in strand
mismatch, even after canonicalization and normalization.

Fig. 5 depicts basic blocks taken (with some changes
made for brevity of presentation) from the add_ref_tag()
procedure in pack-objects.c, which is a part of version
2.10.0 of the git project. The two blocks perform the
same operation – preparing arguments for the procedure
call packlist_find(&to_pack, peeled.hash, NULL). Ar-
gument preparation is as follows: (i) The address of the
to_pack argument is stored into the x0 register in the
AArch64 case (Fig. 5(a), lines 1-2), and the edi register in
the x86_64 case (Fig. 5(b), line 3); (ii) NULL is stored into
the x2 register in the AArch64 case (Fig. 5(a) line 4), and
the edx register in the x86_64 case (Fig. 5(b) line 1); and
(iii) the peeled.hash field, which belongs to the locally allo-
cated peeled struct, is computed at offset 0x30 of the stack
pointer and assigned into x1 in the AArch64 case (Fig. 5(a),
line 3), but assigned directly to the rsi register in the x86_64
case (Fig. 5(b), line 2), due to a different memory outline.
Note that we intentionally left in the callee’s name for clar-
ity; however, procedure names are in no way used to estab-
lish similarity in GitZ, as they do not exist in the stripped
binary setting.

1 adrp x0, #to_pack
2 add x0, x0, #to_pack
3 add x1, sp, #0x30
4 mov x2, #0
5 bl packlist_find

1 xor edx, edx
2 mov rsi, rsp
3 mov edi, offset to_pack
4 call packlist_find

(a) gcc 4.8 AArch64 -O1 (b) gcc 4.9 x86_64 -O1

Figure 5. add_ref_tag() compiled to different archs

Although most differences ((i) and (ii)) are bridged by
GitZ, the different memory layout over architectures hinders
our approach’s matching ability and results in some loss of
precision.
Templating, Vectorization and Inlining: Some language, ma-
chine or compiler mechanisms may introduce vast syntac-
tic changes to a procedure, which may also result in dif-
ferent semantics. Generic template procedures, are written
as a means to allow functionality over several types, and
thus can be compiled to operate over different types. The

Canon

Norm

LLVM

w/

GC

Canon

Norm

LLVM

Canon

LLVM

w/

GC

Canon

LLVM

Norm

LLVM

w/

GC

Norm

LLVM

Norm

VEX

w/

GC

Norm

VEX

LLVM

w/

GC

LLVM

VEX

w/

GC

VEX

CROC 0.9780.9270.8750.8510.9540.9080.9430.9050.8780.8470.8790.848

0.75

0.8

0.85

0.9

0.95

1

Normalized Canonical Both

CROC:

Setting:

Figure 6. The average accuracy (CROC) of the All v. All
experiment, when applying different parts of our solution.

same template procedure compiled by different compilers
will differ even more so when it is compiled to different
types. We encountered template procedures in our evalua-
tion; however, as the general algorithm performed by the
template procedure is the same, GitZ was able to identify
enough shared strands over the differently typed compila-
tions to detect similarity. The same was observed for vector-
ized vs. non-vectorized assembly code for the same proce-
dure.

Inlining poses a challenge in establishing similarity, as it
introduces the code of a different procedure into the body of
the query or target. However, in our experiment, it resulted
in relatively few wrong matches. Since the core functionality
of the caller is preserved in its own strands, these strands
were sufficient to capture similarity of true positives, even
when the call-graphs vary. In other cases, caller procedures
were matched with callees that were inlined, which initially
seemed like false positives. To correctly label these results
we added a pass flagging caller-callee similarity as a true
positive.

4.5 Comparing Components of the Solution

The effect of canonicalization and/or normalization Fig. 6
presents the average accuracy for the All v. All experiment,
in terms of the CROC metric (y-axis and below each bar),
for different settings (the x-axis) of GitZ. The graph shows
accuracy results when (incrementally) applying the different
components in our techniques, where the leftmost bar rep-
resents the accuracy for computing the similarity by simply
counting the number of shared strands over the procedures’
VEX-IR strands, without any canonization or normalization,
and without a global context. The rightmost bar shows ac-
curacy when applying our complete approach, which is also
the result reported in all previous experiments. Fig. 6 is sepa-
rated into blank bars and full bars, representing results with-
out and with the application of a global context P.

The following observations can be made from Fig. 6:
(i) The use of a global context uniformly increases preci-
sion for all settings. (ii) Normalization is vital in achieving

syntactic equality, which is to be expected due to the high
variance in register (and temporary) names, originating from
the architecture. (iii) The canonicalized, normalized scenario
(2 rightmost bars) is highly affected by the global context,
with a precision gain of 0.051 in CROC, which translates
to a substantial false positive rate drop from 0.16 to 0.03.
This emphasizes the beneficial dependence of this setting
(which is the de facto setting for GitZ) on the global con-
text, as normalization and canonicalization group together
more strands, thus reducing their significance in PrW̃ (s).

4.6 Understanding the Global Context Effect

Evaluating different compositions of P To throughly under-
stand how the global context affects our method’s success
at finding similar procedures, we experimented with running
GitZ using different variations of P – the approximation of
the global context.

1

10

100

1 101 201 301 401 501 601 701 801 901

Size of P (in #Procedures)

FP

1000

Figure 7. Examining the importance and effect of using the
global context by measuring number of false-positives as P
grows.

Fig. 7 depicts the average number of false positives, as
a function of the size of P, across 5 randomly selected
experiments. In each experiment we selected one query from
the All vs. All corpus and searched for it within the 1K-sized
corpus. Each experiment consisted of multiple runs where
a different (gradually growing in size) set of procedures
were selected for P and used to perform the similarity score
calculation.

Fig. 7 shows how, at the beginning of the experiment,
each increase in the size of P is reflected in a major decrease
in the number of false positives, and eventually a fix point is
reached at around 400 procedures.

Although not expressed in the figure (for clarity and pro-
portion), any further attempts to increase the size of P, even
up to the size of our bigger 500K corpus, did not change the
number of false positives in our experiments.

Following these results we set our P size to 1K (2.5 times
the largest effective size), and composed it by randomly
picking a subset of this size from of our 500K corpus. We
proceeded to perform all of the experiments in this section
with the said subset.

Delving into the Composition of the Global Context
After building our global context, P, we more deeply

examined its contents and found two dominating and sub-
groups of strands in it.
Common strands appearing in all architectures: One type
of strand which occurs frequently, and in all examined ar-
chitectures, is the stack-frame setup and destruction in the
prologue and epilogue of some (mostly large) procedures.
The frame setup is performed by adding and subtracting
from rsp and xsp in the Intel and ARM architectures respec-
tively. Another common strand was the saving and restor-
ing the callee-saved registers. We encountered this type of
strand in different variations, some include partial use of the
callee-saved registers, some use different stack offsets. De-
spite these variations, the strands were successfully detected
as low significance strands within the global context, due
to the optimization and normalization stages. The transfor-
mation converted multiple strands of the said type into one
syntactic form, across compilers and architectures, marking
them as common.
Common strands unique to specific architectures: One rea-
son for GitZ’s lower precision in the cross-arch scenario
(shown in Tab. 2 and explained above) resides in the in-
herent differences between the architectures, differences that
affect the representation of the global context. For example,
one very common instruction encountered in Intel assembly
code is xor some-register,same-register. This instruc-
tion simply puts the value of zero in a register, instead of
using mov some-register, 0. This is used as a code-size-
optimization, as the xor operation on any register is repre-
sented using two bytes, while moving the immediate zero
requires between three and eight bytes (for the instruction
itself and the zero immediate). The ARM architecture aligns
all instructions to size 4, and therefore such instruction size
maneuvers are not performed. Moreover, ARM contains a
special ‘virtual’ register called zr (or r31), which always
holds the value of zero and alleviates the need for a zero im-
mediate altogether. Furthermore, the ARM architecture sup-
ports some very useful instructions not present in the Intel
architecture. One example is the ‘Compare Branch Zero’
(cbz) instruction, which jumps to a specified offset if the
operand register is equal to zero. Several Intel instructions
can be used to represent this operation, i.e., cmp reg, 0;
jz offset. However the flags register will be affected by
the cmp instructions, essentially creating a different compu-
tation. In this scenario the Intel computation will contain a
new flag storing the comparison’s result, breaking the equiv-
alence, and in turn causing the computation’s representation
in the strands to diverge and not match.

4.7 Limitations

GitZ relies on the premise that the same source code com-
piled differently will contain the same chains of execution
(strands), and these can be extracted and transformed to
an equivalent form through normalized canonical strands

(Fig. 1) while reducing the importance of common strands
using statistical reasoning (Fig. 6). Our evaluation shows that
equivalent strands will almost always be found across differ-
ent compilations. However, similarity indeed cannot be es-
tablished in some cases, and these become more frequent as
the two compilations diverge.
Broken basic blocks: As compilation diverges, the result-
ing control flow graphs of the procedures differ from one
another. Fig. 8 depicts the source code (marked (a)) and
the starting basic blocks of three compilations of wget’s
ftp_syst() procedure from file ftp-basic.c (marked (b)-
(d)). Two of the compilations (marked (b) and (c)) are per-
formed by the same compiler make (CLang) with different
versions of the compiler (3.4 and 3.5 respectively), while the
third (marked (d)) is compiled using gcc 4.6. Fig. 8 shows
how the more current versions of CLang operate similarly, as
both versions 3.4 and 3.5 include the call to free() as part of
the first basic block. The CLang compiler (in both versions)
recognizes that both branch destinations of the conditional in
Fig. 8(a) line 8 arrive at a call to free(). gcc at version 4.6
is less optimized and does use the fact that free() is called
in both branches. This difference (among others) results in a
lower similarity score (19 mutual strand for gcc 4.6 vs. CLang
3.5, as opposed to 40 mutual strands for CLang 3.4 vs. CLang
3.5). This illustrates a limitation of GitZ, as it operates at
the boundaries of a basic block. The decision to break pro-
cedures at basic blocks was made due to performance and
scalability concerns. Other approaches (e.g. “tracelets” from
Yaniv et al.[11]) which employ longer chains of executions
can be incorporated into our approach to overcome the limi-
tation, at the price of reduced performance.

5. Related Work
Next, we briefly describe related work that applies to rele-
vant yet different motivations or scenarios.
Similarity in binaries: Ng and Prakash [23] operate in a sim-
ilar context of finding code-reuse and IP theft in binaries,
using symbolic execution and theorem provers. They lack
a cross-compiler evaluation, and use some syntactic heuris-
tics (number of arguments) which affect accuracy. [7] a com-
monly used commercial tool for comparing whole binary li-
braries and executables. It performs a many-to-many com-
parison of all of the procedures inside the binary, and relies
on the connections between these procedures (call-graph) as
partial evidence of similarity. BinDiff ignores procedure se-
mantics altogether [8]. The comparison is heavily based on
syntactic heuristics, including procedure names (which are
unavailable in stripped binaries), the number of jumps, the
number of basic blocks, etc. [11] is also heavily biased to-
wards syntax, and therefore fails to handle differences that
result from different compilers, as shown by [10]. Pewny
et al. [27] uses sampling of SMT-solver simplified basic
blocks, lifted using VEX. They report false positives in their
results, which can be linked to the sampling based method

1 uerr_t
2 ftp_syst (int csock, ...){
3 ...
4 /* Send SYST request. */
5 request = ftp_request ("SYST", NULL);
6 nwritten = fd_write (csock, request,
7 strlen (request), -1);
8 if (nwritten < 0) {
9 free (request);

10 return WRITEFAILED;
11 }
12 free (request);
13 ...
14 }

(a) Source code

mov r14, rsi

mov r15, rdi

mov edi, 0D9Eh

xor esi, esi

call ftp_request

mov rbp, rax

mov ebx, [r15]

mov rdi, rbp

call strlen

mov edi, ebx

mov rsi, rbp

mov edx, eax

call iwrite

mov ebx, eax

mov rdi, rbp

call free

test ebx, ebx

mov ebp, 37h

js loc_B20

mov r14, rsi

mov r15, rdi

mov edi, 0D8Eh

xor esi, esi

call ftp_request

mov rbp, rax

mov ebx, [r15]

mov rdi, rbp

call strlen

mov edi, ebx

mov rsi, rbp

mov edx, eax

call iwrite

mov ebx, eax

mov rdi, rbp

call free

test ebx, ebx

mov ebp, 37h

js loc_B0D

mov rbp, rdi

mov edi, 0F93h

sub rsp, 28h

mov r12, rsi

xor esi, esi

call ftp_request

mov rdi, rax

mov rbx, rax

call strlen

mov edi, [rbp+0]

mov edx, eax

mov rsi, rbx

call iwrite

test eax, eax

mov rdi, rbx

js loc_C18

call free

...

call free

...

(b) CLang 3.5 -O2 (c) CLang 3.4 -O2 (d) gcc 4.6 -O2

Figure 8. Source code and assembly for different compila-
tions of ftp_syst()

because it is not countered by a statistical framework to ac-
count for spurious matches from commonly found computa-
tions. Furthermore, they require a complex BHB process to
be performed online on each pair of compared CFGs (after
some pruning). Recently the authors of [15] extracted syn-
tactic and structural features from the code, which hinders
their applicability to the stripped binary search scenario. The
authors also report a high false positive rate (even for the
bug-search scenario).
Dynamic approaches: Egele et al. [13] propose a dynamic
method where the procedures are executed using random
values and the resulting environment is compared. The re-
ported accuracy is problematic in our scenarios (a tool for
a human expert). Aiken et al. [31] find the equivalence of
source and machine level code by searching for a simulation
relation based on traces of execution. The data driven ap-
proach could be applied to our setting of a binary similarity
but may not scale due to the computationally heavy search
process.

Moreover, dynamic approaches are limited because the
executable may not be easily run externally (i.e., it may
target a different architecture than the researcher’s machine)
and may thus require non-trivial execution access to devices

(e.g., IoT devices). Also, running (any part) of the possibly
vulnerable library may expose the user to risk.
Semantic differencing: Partush et al. [25, 24] produce an
abstract representation of program difference for C programs
with loops. The work is limited by the use of costly abstract
domains and does not operate on binaries. SymDiff by Lahiri
et al. [20] leverages a program verifier to prove equivalence
of whole procedures by translating them to BoogieIVL, or
produce a counterexample. It has limited handling for loops
and will require a translation of binary to full procedures.
Furthermore, the use of provers prevents the approach from
scaling.
Equivalence checking: Engler et al. [29] present a symbolic
execution approach for proving procedure equivalence for
finding bugs in different implementations of the same proce-
dures. They work on the source code level and their method
is limited to non-looping code. Lahiri et al. [20] apply a re-
cursion rule to verify the equivalence of recursive functions.
The rule operates at the level of source code and relies on a
theorem prover, which limits its scalability.
Locating compiler bugs: Hawblitzel et al. [16] compare in-
termediate language (IL) code produced from different com-
pilers to root-cause compiler bugs, and thus focus on full
equivalence instead of similarity. This approach is not likely
to scale in our setting, as it uses semantic tools for proving
equivalence.
Structure-based static methods: The authors of [28] present
an interesting approach for finding similarity using expres-
sion trees and their similarity to each other, but this approach
is vulnerable to code motion and is not suited to cross-
compiler search as the different compilers generate different
calculation “shapes” for the same calculation. Jacobson et
al. [17] attempt to fingerprint binary procedures using the se-
quence of system calls used in the procedure. This approach
is unstable under patching, and is only applicable to pro-
cedures which contain no indirect calls or use system calls
directly. Eschweiler et al. [14] target multiple architectures
and rely on the (static) control flow structure of the proce-
dure for similarity along with a numeric filtering pre-stage
for scalability. This reliance on syntactic features leads to
sub-optimal accuracy and limitations, making it not applica-
ble in some cases (such as procedures with a small number
of branches).

Horwitz et al. [32] recognized the importance of statis-
tical reasoning, yet their method is geared towards source-
code and employs n-grams, which were shown to be a weak
representation for binary similarity tasks [11]. Jang et al.
[18], who also use this basic n-gram decomposition, show
a similarity engine, which can be considered complimentary
to our hashed search. However, it targets a different scenario
of malware detection using features. N-grams are yet again
used by Khoo et al. [19], in combination with graphlets.
The approach is structural as well, and thus is susceptible to

structural changes and further suffers from limitations simi-
lar to [14].

6. Conclusions
We presented a scalable approach for establishing similarity
between stripped binaries (with no debug information). Our
approach can establish similarity with high accuracy even
when the code has been compiled using different compilers,
with different optimization levels, or targeted different archi-
tectures.

The main idea is to decompose each binary procedure
to strands (small comparable segments that preserve de-
pendence chains), and to perform out-of-context “strand re-
optimization”, by using the compiler-optimizer to transform
the strand into a canonical normalized form. After this trans-
formation, these strands can be used for efficient comparison
simply by hashing them. To establish procedure similarity,
we use a statistical framework that focuses on comparison of
statistically significant strands, using a global context built
using a sampling of procedures “from the wild”.

We implemented our technique in a tool called GitZ and
performed an extensive evaluation. We show that GitZ is
able to perform millions of comparisons efficiently, and that
the combined use of strand re-optimization with the global
context establishes similarity with high accuracy, and with
an order of magnitude speed-up over a competing method.

References
[1] Esh - statistical similarity of binaries. http://binsim.com.

[2] gcc optimizations options. https://gcc.gnu.org/onlinedocs/
gcc/Optimize-Options.html.

[3] Llvm’s analysis and transform passes. http://llvm.org/
docs/Passes.html.

[4] Mcsema. https://github.com/trailofbits/mcsema.

[5] Shellshock vulnerability cve information. https://cve.
mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271.

[6] Yard - yet another roc drawer. http://github.com/
ntamas/yard.

[7] zynamics bindiff. http://www.zynamics.com/bindiff.
html.

[8] zynamics bindiff manual - understanding bindiff. http:
//www.zynamics.com/bindiff/manual/index.html#
chapUnderstanding.

[9] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz. Bap: A
binary analysis platform. In Proceedings of the 23rd Interna-
tional Conference on Computer Aided Verification, CAV’11,
pages 463–469, Berlin, Heidelberg, 2011. Springer-Verlag.

[10] Y. David, N. Partush, and E. Yahav. Statistical similarity of
binaries. In Proceedings of the 37th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation,
PLDI ’16, 2016.

[11] Y. David and E. Yahav. Tracelet-based code search in exe-
cutables. In Proceedings of the 35th ACM SIGPLAN Confer-

http://binsim.com
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://llvm.org/docs/Passes.html
http://llvm.org/docs/Passes.html
https://github.com/trailofbits/mcsema
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271
http://github.com/ntamas/yard
http://github.com/ntamas/yard
http://www.zynamics.com/bindiff.html
http://www.zynamics.com/bindiff.html
http://www.zynamics.com/bindiff/manual/index.html#chapUnderstanding
http://www.zynamics.com/bindiff/manual/index.html#chapUnderstanding
http://www.zynamics.com/bindiff/manual/index.html#chapUnderstanding

ence on Programming Language Design and Implementation,
PLDI ’14, pages 349–360, New York, NY, USA, 2014. ACM.

[12] J. Duan and J. Regehr. Correctness proofs for device drivers
in embedded systems. In 5th International Workshop on Sys-
tems Software Verification, SSV’10, Vancouver, BC, Canada,
October 6-7, 2010, 2010.

[13] M. Egele, M. Woo, P. Chapman, and D. Brumley. Blanket ex-
ecution: Dynamic similarity testing for program binaries and
components. In Proceedings of the 23rd USENIX Security
Symposium, San Diego, CA, USA, August 20-22, 2014., pages
303–317, 2014.

[14] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla. discovre:
Efficient cross-architecture identification of bugs in binary
code. In 23nd Annual Network and Distributed System Se-
curity Symposium, NDSS 2016, San Diego, California, USA,
February 21-24, 2016, 2016.

[15] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin.
Scalable graph-based bug search for firmware images. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 24-
28, 2016, pages 480–491, 2016.

[16] C. Hawblitzel, S. K. Lahiri, K. Pawar, H. Hashmi, S. Gokbu-
lut, L. Fernando, D. Detlefs, and S. Wadsworth. Will you still
compile me tomorrow? static cross-version compiler valida-
tion. In Joint Meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, ESEC/FSE’13, Saint
Petersburg, Russian Federation, August 18-26, 2013, pages
191–201, 2013.

[17] E. R. Jacobson, N. Rosenblum, and B. P. Miller. Labeling
library functions in stripped binaries. In Proceedings of the
10th ACM SIGPLAN-SIGSOFT Workshop on Program Anal-
ysis for Software Tools, PASTE ’11, pages 1–8, New York,
NY, USA, 2011. ACM.

[18] J. Jang, D. Brumley, and S. Venkataraman. BitShred : Feature
Hashing Malware for Scalable Triage and Semantic Analysis.
Proceedings of the 18th ACM Conference on Computer and
Communications Security, pages 309–320, 2011.

[19] W. M. Khoo, A. Mycroft, and R. Anderson. Rendezvous: A
search engine for binary code. In Proceedings of the 10th
Working Conference on Mining Software Repositories, MSR
’13, pages 329–338, Piscataway, NJ, USA, 2013. IEEE Press.

[20] S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebêlo.
Symdiff: A language-agnostic semantic diff tool for impera-
tive programs. In CAV, pages 712–717, 2012.

[21] K. R. M. Leino. This is boogie 2. http://microsoft.com/
en-us/research/publication/this-is-boogie-2-2/.

[22] N. Nethercote and J. Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In PLDI, pages
89–100, 2007.

[23] B. H. Ng and A. Prakash. Expose: Discovering potential bi-

nary code re-use. In Computer Software and Applications
Conference (COMPSAC), 2013 IEEE 37th Annual, pages
492–501, July 2013.

[24] N. Partush and E. Yahav. Abstract semantic differencing for
numerical programs. In Static Analysis: 20th International
Symposium, SAS 2013, Seattle, WA, USA, June 20-22, 2013.
Proceedings, pages 238–258. Springer, 2013.

[25] N. Partush and E. Yahav. Abstract semantic differencing via
speculative correlation. In Proceedings of the 2014 ACM
International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA 2014, part of
SPLASH 2014, Portland, OR, USA, October 20-24, 2014,
pages 811–828, 2014.

[26] S. Person, M. B. Dwyer, S. G. Elbaum, and C. S. Pasareanu.
Differential symbolic execution. In SIGSOFT FSE, pages
226–237, 2008.

[27] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz.
Cross-architecture bug search in binary executables. In 2015
IEEE Symposium on Security and Privacy, SP 2015, San Jose,
CA, USA, May 17-21, 2015, pages 709–724, 2015.

[28] J. Pewny, F. Schuster, L. Bernhard, T. Holz, and C. Rossow.
Leveraging semantic signatures for bug search in binary pro-
grams. In Proceedings of the 30th Annual Computer Security
Applications Conference, ACSAC ’14, pages 406–415, New
York, NY, USA, 2014. ACM.

[29] D. A. Ramos and D. R. Engler. Practical, low-effort equiv-
alence verification of real code. In Proceedings of the 23rd
International Conference on Computer Aided Verification,
CAV’11, pages 669–685, Berlin, Heidelberg, 2011. Springer-
Verlag.

[30] N. Rosenblum, B. P. Miller, and X. Zhu. Recovering the
Toolchain Provenance of Binary Code Categories and Sub-
ject Descriptors. 20th International Symposium on Software
Testing and Analysis (ISSTA), page 11, 2011.

[31] R. Sharma, E. Schkufza, B. Churchill, and A. Aiken. Data-
driven equivalence checking. In Proceedings of the 2013
ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, OOP-
SLA ’13, pages 391–406, New York, NY, USA, 2013. ACM.

[32] R. Smith and S. Horwitz. Detecting and measuring similarity
in code clones. In Proceedings of the International Workshop
on Software Clones (IWSC), 2009.

[33] S. J. Swamidass, C. Azencott, K. Daily, and P. Baldi. A
CROC stronger than ROC: measuring, visualizing and op-
timizing early retrieval. Bioinformatics, 26(10):1348–1356,
2010.

[34] M. Weiser. Program slicing. In Proceedings of the 5th In-
ternational Conference on Software Engineering, San Diego,
California, USA, March 9-12, 1981., pages 439–449, 1981.

http://microsoft.com/en-us/research/publication/this-is-boogie-2-2/
http://microsoft.com/en-us/research/publication/this-is-boogie-2-2/

	Introduction
	Our Approach

	Overview
	The Challenge in Establishing Binary Similarity
	Representing Procedures in a Decomposed, Canonicalized & Normalized Form

	Algorithm
	Representing Binary Procedures with Canonicalized Normalized Strands
	Scalable Binary Similarity Search

	Evaluation
	Creating a Corpus to Evaluate the Different Problem Vectors
	Evaluation Metric
	GitZ as a Scalable Vulnerability Search Tool
	All vs. All Comparison
	Comparing Components of the Solution
	Understanding the Global Context Effect
	Limitations

	Related Work
	Conclusions

